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1 INTRODUCTION
Synthetic aperture sonar (SAS) is capable of producing high-resolution images of the seafloor. Many
applications of SAS involve comparing data from differentmissions. For example, image-based change
detection can identify areas within the imaged scene where the backscattering strength has changed
in the time interval between missions. Similarly, object-based change detection looks for objects which
have appeared, disappeared or changed between images. Image fusion can combine multiple images
of a scene, typically captured from different aspect angles, to give a single image with advantages other
than increasing the image resolution. Applications such as these require finding suitable partner legs
from other missions, with each application imposing different selection criteria. In a regularly surveyed
area, such as a harbour or important waterway, a large amount of previous data can be available,
making manual selection of such partner legs difficult.

This calls for a database with a flexible structure to store relevant information about SAS missions
that have been performed. In this paper, we propose a database using the GeoPackage format, a
non-proprietary geospatial database widely supported by geographic information system (GIS) plat-
forms and common programming languages. The GeoPackage format defines how geospatial infor-
mation, such as the trajectory followed by the sonar, should be stored, and allows any desiredmetadata
columns to be added to each table. Further details about both the general GeoPackage database for-
mat and the structure of our SAS database are given in Section 2. Retaining every point of the sonar
trajectory will be unnecessary for most applications; a method of simplifying trajectories for storage in
the database is presented in Section 3.

Two example applications using information from the database are then presented. Both of these
employ a hierarchical structure: initial filtering at the database level selects potentially useful missions,
and further filtering in the application refines the set of chosen missions. In Section 4, a procedure for
finding partner legs for image-based change detection is given. The second application, detailed in
Section 5, is to find a set of images of a desired area which can be utilised for some form of multi-image
processing. Some discussions and concluding remarks are given in Section 6, and details about the
line piece distance metric used in the change detection application are provided in Appendix A.

2 GEOPACKAGE MISSION DATABASE
GeoPackage (sometimes abbreviated to GPKG) is a non-proprietary, platform-independent geospa-
tial database format defined by an Open Geospatial Consortium (OGC) standard.1 It uses the public
domain SQLite database engine which stores data in a single file. As such, it is easy to share and can
be directly accessed, i.e., without a separate API or database server, by any programming language
with SQLite support (which is widespread). It is widely supported by GIS platforms.

For this work, we use a GeoPackage database with three feature tables, that is, tables containing
vector features. The geospatial definition of each feature is stored in a geometry column; each feature
table must have exactly one geometry column. The structure of this database is shown in Figure 1.
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gpkg_contents

table_name
data_type
identifier
srs_id
description
last_change
min_x, min_y, max_x, max_y

gpkg_spatial_ref_sys

srs_name
srs_id
organization
organization_coordsys_id
definition
description

gpkg_geometry_columns

table_name
column_name
geometry_type_name
srs_id
z
m

missions

mission_id
mission_area
mission_name
system
start_time
...

legs

leg_id
mission_id
trajectory
leg_number
leg_type
leg_start_time
leg_end_time
...

images

image_id
leg_id
image_area
sensor
frequency
side
...

Figure 1: GeoPackage database structure for this work. The upper row shows the feature
tables and the lower row the GeoPackage tables. For simplicity, not all metadata columns in
the feature tables are listed. The geometry columns are marked in bold.

Information about the completemission is stored in the missions table with a polygon geometry column
mission_area marking the area imaged during the mission. Each leg of a mission is placed in the
legs table with a link to its mission using the unique IDs automatically generated by the database.
The trajectory followed by the system during the leg is stored in the trajectory geometry column as a
linestring (a sequence of points). In general, multiple images can be reconstructed from each leg, one
for each combination of receiver, operating frequency etc. Each possible image is stored in the images
table with the image_area geometry column storing a polygon marking the area where an image can
be formed. Again, this is linked to the leg via its unique feature ID. All of these tables contain extra
metadata columns about the data collection. These columns are not restricted by the GeoPackage
standard and so can be trivially customised to suit the system, operator, intended application etc.

Two GeoPackage informational tables are always required. The gpkg_spatial_ref_sys table stores
each spatial reference system (SRS; a synonym of coordinate reference system, CRS) used within the
database using the well-known text (WKT) format2. Information about all data tables is stored in the
gpkg_contents table, including the type of data they store, the SRS in use, a human-readable iden-
tifier and description, the timestamp the table was last modified, and a bounding box of the features
in the table. As this database contains feature tables, the gpkg_geometry_columns is also required.
This specifies the type of geometry they use, the SRS and whether the features include z (height) and
m (other measure, e.g., linear distance from the start of the feature for each point in a linestring) infor-
mation. GeoPackages can also store raster images in tile pyramids, and extensions can be specified
within a gpkg_extensions table. OGC registered extensions include table relationships (see Section 6
for some discussion of this extension) and spatial indexes using R-trees for faster data selection.

3 SIMPLIFYING TRAJECTORIES FOR STORAGE
Most navigation systems will record the position of the sonar at a relatively high rate. For example,
the inertial navigation system (INS) on one of our platforms records on the order of 12 000 positions
per kilometre travelled in its standard configuration. Although the entire trajectory could be stored
within the database, a decimated version will reduce both the database size and the time required
to load, process and display the data. The minimal case is to store only the first and last points in
the database, but for some applications it may be desirable to store more points. In the following,
we propose a method to simplify a trajectory to N points denoted p1, p2, . . . , pN forming N − 1 line
segments.
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Many line simplification techniques only consider the error between the original and simplified lines.
We wish to impose three additional constraints on the segments of the simplified trajectory. Firstly,
each of the N points must correspond to points in the original trajectory. Similarly, p1 and pN must be
the first and last points of the original trajectory, respectively. Finally, the length Ln of the nth segment
(that is, the segment between pn and pn+1) should be within some range of values [Lmin, Lmax]. Here,
we take Ln as the cumulative linear distance travelled by the sonar between pn and pn+1 on the original
trajectory; similar results could be achieved by using the direct distance |pn+1 − pn|. The following
iterative algorithm performs the simplification using a parameter 0 < α < 1 to reduce the size of each
tested segment in a geometric progression until it is suitable:

1. Initialise n = 1 and set p1 to the first point of the original trajectory.

2. Set the proposed length L̃n = Lmax.

3. Select all points in the original trajectory within distance L̃n from pn. The furthest of these points
from pn is the proposed segment end point p̃n+1.

4. Compute some error metric ϵ between the selected points and the line between pn and p̃n+1. If
ϵ fails to meet a predetermined threshold ϵT , decrease the proposed length to L̃n = αL̃n and if
the reduced L̃n > Lmin return to step 3.

5. As either the error or minimum length criteria have been met, we have found pn+1. If pn+1 is
closer than distance Lmin to the end of the original trajectory, set pn+2 to that end point and stop;
we have now completed simplification of the trajectory to N = n+ 2 points.

6. Increment n and return to step 2 to process the next segment.

Note that the final segment may be shorter than Lmin with this procedure. If preferred, step 5 may be
modified to replace pn+1 with the original end point in the stop condition. A maximum of

Mmax =

⌈
log(Lmin/Lmax)

logα

⌉
+ 1 (1)

lengths will be tested per segment, giving an upper bound of ⌈MmaxLfull/Lmin⌉ tests to simplify a tra-
jectory of length Lfull.

The simplification of some recorded trajectories is shown in Figure 2 using the mean of the perpendic-
ular distances between the original points and the proposed line segment for the metric ϵ with α = 0.8,
Lmin = 10m and Lmax = 50m. These length parameters were empirically found to yield good results
with a variety of trajectories recorded by our system. Comparing Figures 2b and 2c shows that the
error threshold can be chosen to determine whether the algorithm follows wobbles in the trajectory
with shorter segments or whether it uses longer segments in the mean direction of travel.

4 FINDING PARTNER LEGS FOR CHANGE DETECTION
Change detection is a common application of SAS images. Ideally, the only differences between two
images would be due to changes in the imaged scene. This requires other sources of differences, such
as a change in imaging geometry, to be minimised. As registering the images and performing change
detection is a complex procedure, it is desirable to identify potential partner legs from a comparison
of their trajectories. Given a mission database as described previously and a base leg from that
database, we propose the following procedure to determine other legs which have a high likelihood of
being suitable for change detection against the base leg:

1. Select all other legs which intersect the boundary polygon of the base mission as the initial set
of candidate legs.

2. If the database uses geographic coordinates, project all trajectories to Cartesian coordinates.

Vol. 46, Pt.1 2024



Proceedings of the Institute of Acoustics

-50 0 50
Easting (m)

-40

-20

0

20

40

60

80

N
or
th
in
g
(m

)

Original: 19445 segments
Simplified: 72 segments

Mean L: 16.7m

(a) Four circles with ϵT = 0.5m

-5.0 -2.5 0.0
Easting (m)

-400

-200

0

200

400

N
or
th
in
g
(m

)

Original: 12222 segments
Simplified: 24 segments
Mean L: 41.7m

(b) ϵT = 0.5m

-5.0 -2.5 0.0
Easting (m)

-400

-200

0

200

400

N
or
th
in
g
(m

)

Original: 12222 segments
Simplified: 49 segments
Mean L: 20.5m

(c) ϵT = 5mm

Figure 2: Examples of trajectory simplification. Blue lines denote the original trajectory and
orange lines the simplified version. Note the exaggerated horizontal axes in (b) and (c).

3. Remove legs which do not meet predetermined thresholds, e.g., are not within a certain distance
of the base leg or differ in heading by more than an allowable amount, from the candidate set.

4. Estimate the change detection success rate for the base leg and each candidate leg, and select
those above a set threshold as the partner legs.

To demonstrate this algorithm, an implementation was created in Python using the fudgeo package to
interact with the database, the SpatiaLite3 extension library to efficiently perform the intersection as part
of the SQL SELECT query, and NumPy to perform the remaining calculations. Twometrics were used for
the third step: the line piece average distance (see Appendix A) and the absolute course difference
between the legs. These metrics, amongst others, were previously analysed by Klemm et al.4 as
potential predictors of change detection performance. In that work, upper limits of 6.9m for the line
piece average distance and 4.2° for the course difference were suggested. The success rate of change
detection over their dataset (defined as the percentage of leg pairsmeeting a given distance and course
limit which could be successfully registered for change detection) is reproduced in Figure 3a. This
suggests a high likelihood of successful change detection for combinations of parameters outside one
of these limits; note that caution is required when considering the results for higher course differences
since, as Figure 3b shows, few trials are available in this region. To take advantage of this, the threshold
for the line piece average distance was increased to 14m and the provided success rate used for the
final step with a lower bound of 80% required.

To evaluate the performance of this algorithm, four databases containing randomly generated mis-
sion, leg and image data were created. These differed in size (1980 legs and 18 383 legs) and the
coordinate system used for geospatial data (geographic coordinates with the EPSG:4326 or GPS co-
ordinate system, and Cartesian coordinates in the EPSG:32632 or UTM zone 32N coordinate system).
A single-threaded Python implementation of the algorithm was written, and 10 000 trials of this was run
over each of the databases on an Intel i9-12900K CPU. Each trial used a different randomly selected
base leg from the database. Figure 4 shows the mean and standard deviation of the time taken to
complete the algorithm as a function of the number of potential partner legs found. The size of the
database has the largest impact on the performance, with Cartesian coordinates being faster than ge-
ographic coordinates for databases of the same size. There appears to be no significant link between
the processing time and the number of partners found.
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Figure 3: (a) The success rate of the change detection registration and (b) the parameter space
distribution of trials used to generate (a). The red dashed lines indicate the 6.9m and 4.2°
thresholds and the orange dashed line shows the 80% success contour.
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Figure 4: Mean (solid line) and standard deviation (shaded area) of the time taken to find po-
tential change detection partner legs from different databases over 10 000 trials. -1 on the
horizontal axis corresponds to no initial matches from the database.

5 FINDING PARTNER LEGS FOR MULTI-IMAGE PROCESSING
Multiple SAS images of a common area can be combined to improve analysis. For example, images
of an area collected on multiple legs with different aspect angles can be combined to reduce shadows
and speckle noise5 or used to improve the performance of an object classifier.6 For some applications,
images from different systems, for example with different resolutions and clutter suppression abilities,
can be combined7 while other applications will require the same platform to be used for all images.
Starting from an area of interest (AOI), such as an existing image or a polygon around a detected
object, we propose the following algorithm for finding partner images:

1. Select all images in the database which intersect the AOI as the initial candidate set. Other
criteria based on stored data, e.g., mission date or system used, can be applied here.

2. If the database uses geographic coordinates, project all trajectories and polygons to Cartesian
coordinates.

3. Measure the area of the intersection polygon for each candidate and discard any candidate for
which this area is too low.
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Figure 5: Mean (solid line) and standard deviation (shaded area) of the time taken to find po-
tential partner images from databases containing different numbers of legs and using different
coordinate systems. 10 000 trials were performed, each using a different base image randomly
selected from the database. -1 on the horizontal axis corresponds to no initial matches from
the database.

4. Determine a view reference point. The centre of the AOI is one option. For a large image with
intersections in widely separated regions, multiple reference points could be used, for example
by clustering the intersections and using the centroid of each cluster.

5. Find the view vectors from the reference point to each vertex in the candidate trajectories. Cal-
culate the view angle and view range as the angle from east of the vector and the length of the
vector, respectively. Select any candidates which meet desired criteria on the view angle and
range as the partners.

The criteria in the final step can be complex. For example, it may be sufficient to use the median view
angle, or more detailed analysis of the sequence of view angles may be required. Multiple images
from similar view angles and ranges may be acceptable, or an extra selection step may be required,
e.g., out of a set of images from similar view angles and ranges, select the closest in time to the base
image.

An single-threaded implementation of this algorithm was coded in Python using the fudgeo package
to interact with the database, the SpatiaLite extension to implement the intersection test and provide
a polygon of the intersection, and NumPy to perform the remaining calculations. It was tested on
the same set of four databases used in the previous section. For each database, 10 000 trials were
performed on an Intel i9-12900K processor, each using a different randomly chosen base image and
a fixed minimum intersection area of 10 000m2. The mean and standard deviation of the time taken
to complete the algorithm as a function of the number of image partners found is shown in Figure 5.
As with the change detection application, the size of the database has a large impact, and Cartesian
coordinates are faster. A gradual increase in processing time can be observed as the number of
partner images found increases.

6 DISCUSSION
GeoPackage is a flexible database format widely supported by many GIS systems and common pro-
gramming language. As demonstrated by the examples applications presented here, it is suitable for
storing and filtering SAS mission information. Its ability to store images in raster tile layers has not
been tested in this work, but no obvious reason is seen why a GeoPackage database could not be
used for storing SAS images. It should be noted that such tiles are encoded as PNG or JPEG images,
and so would only be suitable for display rather than subsequent complex analysis. Being based on
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Figure 6: Two examples of the intermediate distances used to calculate the line piece distances.
The base leg is drawn in blue and the partner leg in orange.

SQLite means a database is easy to share, and its performance for the example applications was no
issue. More high-performance databases for geospatial applications, such as PostgreSQL+PostGIS,
are available but are more complicated to run and are not easily portable.

The database structure used here assumes a link between entries in the images and legs tables, and
between entries in the legs and missions tables. In SQL terms, this can be described with a foreign
key within the database. SQLite has support for foreign keys, but this must be enabled at compile time
by each application using the SQLite engine. Even if it is, foreign keys are not enforced by default, with
a special PRAGMA query required at the start of each connection to enable enforcement. An external
application which does not enforce this may therefore modify the database to an inconsistent state.
The GeoPackage related tables extension8 adds support for defining relationships between data tables
by adding a mapping table for each link. These mapping tables can contain extra metadata about the
relationship, and can therefore be more flexible than a foreign key. An external application which does
not support this extension may modify the data tables without updating the mapping, again resulting in
an inconsistent database. Software reading from a database should therefore be prepared to handle
these situations.

A GeoPackage database can store information with both geographic SRSs and projected SRSs. Most
functions in the SpatiaLite extension library can also work with either type of SRS. In the applications
presented here, using a projected SRS had a minor performance improvement. Note that projections
have a usable area outside of which the accuracy of the projection degrades. In partner applications
such as presented here, a similar level of error will apply to all nearby data, and so the error in the
differences may not be significant.

Some example code for generating a database, implementing the example algorithms and reproducing
the timing results is available at https://github.com/hsu-sonar/icua24-geopackage under the CC0
license (equivalent to public domain in most jurisdictions).

APPENDIX A
Two legs (or pieces of legs) being compared can be represented as two closed line segments. Label
the starting and finishing vertices of the base leg as P1 and P3, respectively. There are two options
for the labels P2 and P4, the vertices of the partner leg. Compute u = min(||P2 − P1|| , ||P4 − P3||) for
each option, and select the option which minimises u. For each point Pn, find a point Hn on the other
leg such that the line segment PnHn is perpendicular to the other leg. If no such point exists within
the other leg, set Hn to be the endpoint of the other leg closest to perpendicular. The distance dn is
then the Euclidean distance between Pn and Hn. Figure 6 shows some examples of these distances.
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The line piece minimum distance dmin represents the closest approach between the two legs:

dmin =

{
0 if P1P3 and P2P4 intersect,
min

n∈1,...,4
dn otherwise. (2)

The line piece average distance d̄ is the mean of the smaller of the distances at either end of the
segments, adjusted for intersecting trajectories:

d̄ =


1

4

(
min
n∈1,2

dn + min
m∈3,4

dm

)
if P1P3 and P2P4 intersect,

1

2

(
min
n∈1,2

dn + min
m∈3,4

dm

)
otherwise.

(3)
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