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1. INTRODUCTION

Statistical Energy Analysis has traditionally been developed using a modal summation and averaging
approach. and this has led to the need for the many well known and restrictive SEA assumptions. The
assumption oi Weak coupling‘ is particularty unacceptable when attempts are made to apply SEA to
structural couplings. Many scientists believe that thismaior assumption is more a iunction oi the modal
approach than a necessary requirement of SEA ttseti.

This paper ignores this restriction. and describes a wave approach to the calculation oi beam-beam
coupling loss iaaors. It is based on a calculation oi the transmission matrix at a junction oi semi-infinite
beams. with each beam having tour wave—types associated with it (iongitutflnai. torsional and two bending).
The method assumes a palm oonnectipn between the various beams but takes iull account ot beam
orientation and the detailed geometry oi the luncticn. The assumptions involved in using these
transmission coefficients to obtain coupfing loss iactors are discussed. Also described is a parallel and
novel wave approach to the deterministic prediction oi the response at a beam network in which the SEA
result is simpty the first term oi an Infinite series.

Finally by considering Individual modes the spread ol exact results about the SEA prediction is discussed
and simple tormulae derived iorthis spread when the modal overtap iactor is small.

2. BASIC BEAM EQUATIONS

2.1 Equations ot motion
Practically all textbooks on the subject oi beams either deal only with the static equations or include the
time variant terms but make sin-pnlying assumptions about the beam. In particular most authors assume
that the beam shear axis and the beam centroid axis are coincident, though this is only true ior doubly
symmetric beam sections. Taking iull account oi such ottsets and including the usual 'thick' bending
terms. the 12 cyclic equations oi motion developed with respect to the centroid axes are:

swat a -esav,./ax, (2.1)
.w,+(z,/GS)aF,/ar a -a(vy-:zw,.)/ax. (2.2)
Wy+(%y/GS)ai-}lat = -a(vl+e,w,.)/ax. (2.3)

3(Mx+e,r=y-e,F,)/ar u -GJaw,./ax. (2.4)
BMy/BI a .eyaw,/ax, (2.5)
aux/at u clam/ax. (2.6)

man/at a -aF../ax. (2.7)
t'nBVy/BI a -aF,/ax. (2.3)
mavl/ar = era/ax. (2.9)

Hxawxiar a -aM../ax. (2.10)
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-Fz+Hyaw,rat =- ~aM,/ax. (2.11)

Fy+HzaWzlat =- -3leax. (2,12)

The beam is assumed to lie on the x—axis and most at the symbols are sell explanatory. v represents linear

velocity. W rotational velocity, F lorce. and M moment. 5,, and c; are the coordinates oi the shear axis

with respect to the centroid axis. and 1., and it; are the thick beam bending shearcoetficients.

2.2 General solution
Ax imt

lMthout loss cl generality we may look Ior solutions where all 12 tieid variables have the tactor e' e .

where or is the radian lrequency oi interest and A is as yet unknown.

Deline a tield variable column vector at such that its transpose is given by

“I = (Vxivy-Vz:WxnWy-wz-Fx.Fy-F1.Mx.My.Mz) . (2.13)

where we have dropped the lactor e'uei“ t Then equations (2.1) to (2.12) can be rewritten in matrix form

35
on = M. (2.14)

where C is a straightlorward algebraic 12 x 12 complex matrix. Equation (2.14) can be solved to give 12

eigenvalues. 11' say. and the 12 assodated eigenvectors, q,- say. The general solution tor the beam can

then be written as

q(x) = UT(x)a. (2.15)

where U isa matrix termed lromthe eigenvectors such that column j at U is qj. T(x)isacfiagonal matrix

termed irom the eigenvalues such that diagonal element I Is exM-kpr). and a is a column vector oi

arbitrary constants dependent upon the beam boundary conditions.

3. COUPLING LOSS FACTORS

3.1 Point junction transmission coetliclents

Consider a point junction made up irom a collection ol semi‘irrfinite bearrrs rigidly connected together at

their ends. Using equation (2.15) the 6 x 6 semi-infinite point impedance matrix tor each beam can be

computed, and by applying suitable coordinate translonnations to take account oi beam orientations and

beam axis ottsets with reaped to the junction. the lull jundion impedance matrix can be caioriated by

summing over all the beams conneded at the junction. By imposing an incident wave at a particular type

(eg torsion) on one oi the beams. and then calculating the force and velocity this causes at the junction. it

is then possible to calculate the transmission coell‘rcierrt between the given input wave and any output

wave on any beam. By using this process tor each wave-type the complete transmission matrix can be

calculated for any junction geometry provided only that the beams are rigidly connected at the junction.

For a junction with two beams. tor example. this matrix will be an 8 x 8 matrix to take lull account oi all tour

wave-types on each at the two beams. it can also be shown that this transmission matrix is always

symmetric.

3,2 Assumptions needed tor the wave approach to SEA

A basic assurrtplion in the wave approach to SEA is that the transm'ssion matrix described above tor a

junction at semi-iniinite beams can be used at an equivalent junction on a finite beam network. This

important assumption may initially appear very restrictive. but not it viewed irom a physical poim oi view. it

SEA is to work at all. then a basic concept Is that under the various averaging processes generic lo SEA
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the dependence on the predse length at a beam cannot be critical. This Implies that the boundary
condition at the end at the beans. remote lrom the lunction under investigation. cannot be relevant. Thus
we can arbitrarily choose these boundary conditions tor mathematical convenience. and therelore our use
of semi-infinite beams is tuily )ustilied. It is well worth noting that this imposes no limit on the use at SEA.
unlike the modal approach with its Weak ooupling‘ requiremem. rather it states that we should view an SEA
prediction as some kind ot mean prediction.

A lurther assumption is needed belore we can proceed to the calculation oi coupling loss lactors. For each
panlcular wave-type In each beam ot the nehlvork. there will be power flowing along the beam in the two
directions. and some relationship has to be assumed between these Mo power flows There have been
lew attempts. with the notable exception ol DeJong [1). to improve on the basic assumption due to
Lyon [2] that states that these two power llows should be assumed equal. This assumption is directly
equivalent to the random incidence assumption commonly made when dealing with plates and acoustic
volumes. Oi course a strid appncatlon at this assumption implies zero net power ilow throughout the
network. however we are not assuming strict equality. but only requiring them to be nearly equal. This
latter point is analogous to the case ot a reverberant room excited by a central source: away lrorn the
source near field we would not expect to have to modiiy our assumption at random incidence. even
though the net outward power strictly invalidates this assumption.

3 .3 Conpfing loss tactor calallations
Consider the power flowing trom sub-system 1 to subsystem 2. and tel 11‘, and 111. be the powers
flowing In sub-system 1 towards and away trorn the Junction respectively. Then it E1 is thetotal energy in
sub-systemt and L is the length at subsystem 1

EA =- n1./cg+n1./cg, (3,1)

where Cu is the group veloa‘ty associated with sub-system 1. Now by definition

«Erma = “1+ 112. (3.2)

where m: is the required coupling loss lador. and 112 is the transmission ooemcient (a single element at
the transmission matrlx described above). Combining equations (3.1) and (3.2) and assuming that r11+
and m. are equal as discussed above. we deduce that

n12 = Treatment). _. (3-3)
Miere n1 Is the subsystem modal density given by

n1 n Uini‘gl- (3‘4)

Furthen'nore. since 112 Is equalto 121 .

ntmz = nznzt . (3-5)

as expected.

4. SEA AND EXACT ANALYSIS

For the particular case at a point excited beam network we may view any theory as a prediction ol the '
transler mobility between the exciting point tome and some response poim. SEA can then be considered
to be the lirst approximation at an infinite series oi approximations which ultimately converge on the
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detemtinistic transier mobility. We may track waves as they travel around the network, as they transmit and

relied at the junctions and as they decay along the beams. Norrnatly such a wave approach to the deter-

ministic result is sirnpty terminated alter a cenain number oi iteration cycles. that is Junction transnttssions.

and any remaining wave power ignored. Oi course it this residual power is significant its neglect will

invalidate the result. thus the result atter tew Iteration cycles is generally of no intrinsic value.

An attemative approach Is to teed this residual power irtto an SEA rnodet and add the result to the

deterrninlstic wave pan oi the prediction. Let Mo be the straightiorward SEA result. M1 the result alter

one iteration cycle. M2 the result alter two iteration cycles. etc. M1 is then the result obtained by

calculating the amplitude oi the point torce induced waves. tracking these waves to the ends oi the forced

beams, is to the first junction. then presenting the subsequent transmitted and reflected wave powers as

power inputs to the SEA model. and finally adding the result iromthls SEA calculation to that obtained

irom the delerrninistic wave tracking along the drive beam By this means the results aiter each iterative

cycle are meaningtul predictions. M0 is the standard SEA result and M_ is the exact result.

By studying this series oi solutions a better understanding oi the SEA result night be obtained. For

example. Fig 1 shows the results tor a single beam In ‘thin' bending. with the iorca at one end, and

because at this speu'al torce position the standard SEA result. Mo . under-predicts. whereas M1 is much

better. Oi course. in this case the result Is not surprising and would be accommodated into standard SEA

theoryby allowing ioriorce inputs at iunctions. the curve labelled Miunc at Fig 1. However more

complicated beam network theory may benelit irom this approach. and It is cenainly interesting to observe

how the rnodai response characteristics appear in Fig i.

5. VARIANCE

The likely variance ot a particular result item the SEA prediction is very ditlicult to catwlate; we are not
much turther iorward today than the results published by Lyon [2] In 1975. This is mainly caused by the

non-Gaussian torm oi the distribution of a set oi particular results. Here we attenth to calculate the spread

oi expected results rather than their hit] statistical distribution. Firstly . whatever the iora‘ng iunctlon, we

can consider the ultimate aim to be the prediction oi the response at some point. At lrequencies

assoo'ated with high mode numbers we must search for average responses and some measure at the

expected spread of results irom this average. hence the birth oi SEA. But it must be remembered that

initially we measure single deterministic response iunciions. even though we may subsequently average

across a frequency band and/or take spatial and ensen'Me averages. ll tor a given structure instead oi

taking these averages we overplot a series oi particular response tunotions. and then study this picture.

we quickly come to the conclusion that we do not necessarily need the tull statistical distribution, simple

measures based on the likely spread could sutiice.

With this in mind. we must ask ourselves what 'the SEA resutt' lrnpiles. particularly In regions at low modal

overlap. In such a region we have well separated modes. and we can oonsiderthe SEA result to be the

energy sum across these well separated modes within a wide trequency bandwidth, divided by this

bandwidth. Assuming that all the modes have equal response levels. it can easily be shown that the SEA

result tor the response. Rs“ . is given by

l Rm 12 = Curt/(20ml (5.1)

where C is some constartt. n is the system modal density. and I1 is the typical mode energy dantping

lactor. The peak level. Rwak . which occurs at a system resonance ls given by

IRpealrlz =- Cllmlz- _ (5.2)  
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Thus

iRpaakF/l Hm I2 a zine. - (5.3)

where e is the modal overlap lactor; given by

0 — ornn . (5.4)

In order to compute the expected minima we must consider two adjacent modes. and we can either sum
their responses and obtain an anti-resonance. or subtrad them to obtain the typical shallow minimum.
Leltlngthesa responses be designated Rm)”, and Rm)”. respectively. it Is easy to show that

IaniM I2/l Hm i2 = 803/1: . (5.5)

and

[Flinn IZIIRsealz = ee/n. (5'6)

it is satislylng that all these iormulae are simple iunctlons of 8 the modal overlap iactor. Investigators oi
SEA variance distributions should perhaps look 10! iuncllons Invorving only this one parameter.

Fig 2 Is a plot oi the results for a single beam in thin' banana. The beam ls 0.03 m x 0.05 m x 3 m and has
a iundamental bending trequenoy 01 48 Hz. and nine deterministic trenster mobilities have been plotted
associated with three point torces at distances 0.53 m. 1.02 m end 1.14 m irom one end. and three
accelerometer response points at distances 2.14 m. 2.48 In and 2.59 m trom the same and. An energy
damping tactor ot 0.02 was used. The tour smooth prediction lines have been calculated using iormulae
(5.3). (5.5) and (5.8) In conjunction with the standard SEA predlulon. The results tor this very special case
are excellent.

8. CONCLUSIONS

Formulae havebeen presented that allow a lull SH prediction oi a general beam network. A novel pan
detenninlstic and part statistical approach has been outlined. A slrmle approach to the spread at particular
results about the SEA prediction has been outlined based on the modal overlap (actor. -
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