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result is simply the first term of an infinite seres.

2.1 Equations of motion
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Finally by considering individuat modes the spread ol exacl resulis about the SEA prediction is discussed
and simpla formulae derived for this spread when the modal overap factor is small.

2. BASIC BEAM EQUATIONS

Practically all lexibooks on the subject of beams either deal only with the static equations or include the
lime varlant terms but make simplitying assumptions about the beam, In particular most authors assume
that the beam shear axis and the beam centroid axis are coincident, though this is only true for doubly
symmetric beam sections, Taking full account of such ofisets and including the usuai 'thick' bending
terms, the 12 cyclic equalions of motion developed with respect 1o the centroid axes arg:
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1. INTRODUCTICN

Statistical Energy Analysis has traditionally been developed using a modal summation and averaging
approach, and this has led to the need for the many well known and restrictive SEA assumptions. The
assumption of ‘weak coupling' is particularly unacceptabls when aftempis are made 1o apply SEAto
structural couplings. Many sclentists believe thal this major assumplion is more a function of the modal
approach than a necessary requirement of SEA iiself,

This paper ignores this restriction, and describes a wave approach to the calculation of beam-beam
coupling loss factors. It is based on a calculation of ihe transmission matrix at a junction of semi-infinite
beams, wilh each beam having four wave-types associaled with it flongiludinal, lorsional and two bending).
The methoed assumes a polm connection between the various beams but takes full account of beam
orientation and the detailed geometry of the junction, The assumptions involved in using these
transmission coefiicients to obtain coupling loss factors are discussed. Also described is a parallel and
novel wave approach 1o the deterministic prediction of the response of 2 beam network in which the SEA
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-Fg+HydWydt = -3Mydx, (2.11)
Fy+ HAWZAt = -9Mzdx, RTAF])

The beam is assumed 1o lia on the x-axis and most of the symbols are self explanatory, V represents linear
velocity, W rotational velocity, F force, and M mome. &y and ez are the coordinates of the shear axis

with respeci 1o the centroid axis, and %, and Xz are the thick beam bending shear coefficien!s.

2.2 General solution
FURT

Without loss of generality we may look for solutions where all 12 field variables have the facler e™e" |
where © isthe radian frequency of interest and A is as yet unknown.

Define a field variable column vector g such that its transpose is given by

Q' = (Vi Vy.Vz.We Wy W Fr.FyFa Mo My Mz) {2.13)
where we have dropped the faclor e""‘ai“’t . Then equations (2.1) 1o (2.12) can be rewritten in malrix form
as

Cq = Aq. (2.14)

whera C is a straightforward algebraic 12 x 12 complex matrix. Equation (2.14) can be solved 1o give 12
eigenvalues,  say, and the 12 associated eigenvectors, qj say. The general solution for the beam can

then be wrilten as
qi{x) = UT{x)a, (2.15)

"whera U is a matrix formed from the eigenvectors such that column | of Uis gj, T(x) is a diagonal malrix
formed from the eigenvalues such that diagonal element J Is exp(-Ap), and a isa column vector of
arbilrary constants dependent upon the beam boundary condilions.

3. COUPLING LOSS FACTORS

3.1 Poinl junctlon transmission costlicients

Consider a point junction made up from a collection of semi-infinite beams rigidly connected together at
(heir ends. Using equation (2.15) the & x 6 seml-infinite point impedance matrix for each beam can b2
computed, and by applying suitable coordinate transformations to lake account of beam orientations and
beam axis offsels with respect to the junction, the full junction impedance matrix can be calculaled by
summing over all the beams connected al the junction. By imposing an incident wave of a panlicular type
(eg torsion) on one of the beams, and then calculating the force and velodily this causes at the junclion, it
is Ihen possible lo calculate the iransmission coellicient between the given inpul wave and any output
wave on any beam, By using this process lor each wave-lype Ihe complete ransmission malrix can be
calculated for any junction geomelry provided only ihat the beams are rigidly connecled at the junction.
For a junction with two beams, for example, this matrix willbe an8 x & matrix 1o take full account of all four
wave-lypes on each of the two beams. 1 can also be shown that this transmission matrix is always
symmetric.

3.2 Assumptions needed for the wave approach 1o SEA

A basic assumption In the wave approach lo SEA is that the transmission matrix described above for a
junction of semi-infinite beams can be used at an equivalent junction on a finite beam network. This
importan assumplion may initially appear very restrictive, but not if viewed from a physical point of view. If
SEA is lo work at all, then a basic concept is that under the various averaging processes generic lo SEA
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the dependence on the precise length of a beam cannot be critical. This implies that the boundary
condition at the end of the beams, remole from the junction under investigation, cannol be relevant. Thus
we can arbitrarily choose these boundary conditions for malkematical convenience, and therefore our use
of semi-Infinile beams is fully jusiified. I is well worth noting that this imposes no limit on the use of SEA,
uniike the modal approach with its ‘weak coupling’ requirement, rather it states thal we should view an SEA
prediction as some kind of mean prediclion.

A further assumption Is needed before we can proceed 10 the calculation of coupling loss factors. For each
particular wave-type in each beam of the network, there will be power flowing along the beam in the two
directions, and some refationship has to be assumed between these two power flows. There have been
few atlempts, with the nolable exception of DeJong [1), 1o improve on the basic assumption due to
Lyon [2) that states that these two power flows should be assumed equal. This assumption is directly
equivalen 1o the random incidence assumplion commonly made when dealing with plaies and acoustic
volumes. Of course a strict application of this assumplion implies zero net power fiow throughout the
network, however we are not assuming strict equality, but only requiring them lo be nearly equal. This
latter poinl is analogous to the case of 2 reverberant room excited by & central source; away from the
source near field we would not expect to have to madily our assumption of random incidence, even
though the net outward power strictly invalidates this assumption.

3.3 Coupling loss facior calculations
Consider the power flowing Irom sub-system 1 1o sub-system 2, and lel Ty, and I1y. be the powers

flowing In sub-system 1 towards and away from the [unction respectively. Then il Ey is the total energy in
sub-system 1 and L s the lsngth of sub-system 4

Byl = My, feg+ M- feg, {(3.1)

where Cg is the group velocity associated wilh sub-system 1. Now by definition
wEin12 = M1 ti2, ‘ 3.2)
where m12 Is the required coupling loss factor, and 12 is the fransmission coefficient (a single element of

the transmission malrx described above), Combining equations (3.1) and (3.2} and assuming that 11,
and TI4- are equal as discussed above, we deduce that

M2 = T1(nwny), 3 (3.3)
where ny is the sub-sysiem modal density given by
M = Lincg) . (3.4)
Funihermore, since 11z Is equalio 1y,
Ntz = N2y, {3.5)

as expected.

4. SEA AND EXACT ANALYSIS
For the particular case of 2 point excited beam network we may view any theory as a prediction of the

transfer mobility between the exciting point force and some response point. SEA can then be considered
to ba the first approximaticn of an Infinile series of approximations which ultimately converge on the
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deterministic transfer mobility. Wa may track waves as they travel around Ihe network, as they transmil and
reflec! at the junctions and as they decay along the beams. Normally such a wave approach lo the deter-
ministic resukt is simply terminated afler a certaln number of iteration cycles, thal is junction fransmissions,
and any remaining wave power ignored. Of course if this residual power is significant its negled will
Invalidate the result, thus the result afler few iteration cycles is generally of no intrinsi¢ value.

An alternative approach Is to feed this residual power into an SEA model and add the result to the
deterministic wave part of the prediction. Lel Mp be the straightforward SEA resull, My the result after
one iteration cycle, Mz the resull alter two iteration cycles, etc. My is then the result ebtained by
calculating the amplitude of the point force induced waves, tracking these waves to the ends of the forced
beams, je to the first junction, then presenting the subsequent transmitted and retlected wave powers as
powaer inputs 1o the SEA modet, and finally adding the result from this SEA calculalion to thai cbtained
{rom the delerministic wave tracking along the drive beam. By this means the results after each iterative
cycle are meaningtul predictions. Mg Is the slandard SEA result and M., is the exact resull.

By studying this series of solutions a betier understanding of the SEA result might be obtained. For
example, Fig 1 shows the resulis for a single beam in ‘thin' bending, with the force at one end, and
because of Ihis special force position the slandard SEA result, Mg , under-predicts, whereas My Is much
better. Of course, in {his case Ihe resutt is not surprising and would be accommodated inlo standard SEA
theory by allowing for force inpuls al junctions, the curve labelled Mjunc of Fig 1. However more
complicated beam network theory may benelil from this approach, and it is cenainly imeresting 1o cbserve
how the modal response characteristics appear in Fig 1.

5. VARIANCE

The likely variance of a particular result from the SEA prediction is vary difficult lo calculate, we are not
much lurther forward today than the results published by Lyon [2] In 1975. This is mainly caused by the
non-Gaussian form of the distribution of a set of particular results. Here we attempi to calculate the spread
of axpected resufls rather than their full stalisticat distribution. Firslly , whatever the forcing function, we
can consider the ulimate aim 1o be the prediction of the response al some point. Al frequencies
associated with high mode numbers we must search for avarage responses and some measure of the
axpected spread of results from this average, hence the birth of SEA. But it must be remembered that
initially we measure single delerministic response functions, even though we may subsequently average
across a frequency band and/or take spatial and ensemble averages. I for a given struclure instead of
taking these averages we overplot a series of particular response functions, and then study this picture,
we quickly come to the conclusicn that we do nol necessarily need the full statistical distribution, simple
measures based on the likely spread could sulfice.

With this in mind, we must ask ourselves whal ' the SEA resull implies, particutarly in regions of low modal
overlap. In such a region we have well separated modes, and we can consider the SEA result o be the
energy sum across these well separated modes within a wide frequency bandwidth, divided by this
bandwidth. Assuming that all the modes have equal response levels, it can easily be shown that the SEA
resutt for the response, Rgea, iS5 given by

|Rsgal? = Crrv(2um) (5.1)

where C is some constant, n is the system modal density, and v is the typical mode energy damping
factor. The peak level, Rpgak , which occurs al a system resonance Is given by

|Rpeak 2 = Cilem)2. (5.2)
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Thus
[ Rpoak %] Rsea? = 2m8, : {5.3)

where 9 Is the modal overap factor, given by
8 = wm. (5.4
In order 16 compute the expacted minima we must consider two adjacent modes, and we can either sum

thelr responses and obtain an anti-resonance, or subtract Ihem to obtain the typical shallow minimum.
Letting these responses be designated Rpin, and Bmin. respeciively, it is easy to show that

| Remine 2| Rsaa 2 = 863, 5.5)
and

| Anine 2| Reea 2 = 80/x. {5.6)

It is satisfying that all these formulaa are simpla functions of 8 the modal overlap factor. Investigators of
SEA variance distributions should perhaps kok for funclions involving only this one parameter.

Fig 2 is a plot of tha results for a single beam In Thin' bending. The beamis 0.03 m x 0.05 m x 3 mand has
a fundamental bending frequency of 48 Hz, and nine deterministic transfar mobilities have been plotted
associated with three point forces at distances 0.53 m, 1.02 m and 1.14 m from one end, and three
accelerometer responsa points at distances 2.14 m, 2.48 m and 2.59 m from the same end. An energy
damping factor of 0.02 was used. The four smooth prediction ines have been calculated using formulag
(5.3), (5.5) and {5.6) in conjunction with the standard SEA prediction. The results for this very special case
ara excellent.

6. CONCLUSIONS
Formulae have baen presented 1hal allow a full SEA prediction of 8 general beam network. ‘A novel parnt

deterministic and par statistical approach has been oullined. A simple appreach to the spread of partrcular
resulls about the SEA prediclion has been oullned basod on the modat overiap factor.
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