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Summg

The free vibration and static characteristics of doubly curved
honeycomb sandwich plates are studied by the finite element method!
using an element having five and seven degrees of freedom per node.
Both constant and parabolic variation of strain in the core is used.
Various parametric studies are conducted to determine their effects
on free vibrations of sandwich plates.

1 . INTRODUCTION

In many ofthe high intensity acoustic environments encountered
in aerospace structures, honeycomb sandwich plates are the lightest
structures to withstand the acoustic pressures. The usual form of
construction has thin face plates (aluminium, titanium or stainless
steel) separated by an aluminium or glass fibre honeycomb care. In

this configuration the direct forces due tobending are carried in
the face plates and the shear forces are carried in the core.

The majority of analytical work to date has been on flat honey-
comb sandwich plates 1,2 3| with very little on singly ILSI or
doubly curved plates 6 TI. The purpose of this paper is therefore
to provide a method for determining the dynamic and static properties
of curved honeycomb plates such as might 'be used in aircraft struc-
tures.

2. POTENTIAL ENERGY EXPRESSIONI EUATIONS
OF. MOTION AND BOUNDARY CONDITIONS

The free vibration and static characteristics of curved sandwich
plates can be determined by using the theorem of stationary potential
energy. The potential energy functional of sandwich plates is
written as:

1| = u + v + T (1)

where U, V, T are the strain enery, potential energy and kinetic
energy respectively of the sandwich plate. These expressions are
derived using strain-displacement relationship given by ‘8]:
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The plate consists of two equal face plates of thickness h2 and a
middle layer core of thickness 2h1 which acts as a low density

stabiliser for the outer facing and resists bending defamation.

Carrying out the first variation as shown by |9I on (1) and (2)
leads to the equations of motion and boundary conditions. The
corresponding boundary conditions for the system are obtained by
satisfying the line integrals. Any possible boundary conditions
along a co—ordinate line x constant can be expressed as:
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Boundary conditions along a co—ordinate line y = constant can be
expressed as:
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3. SELECTION OF THE ASSUME!) DISPLACEMENT FIELD

In order to develop a two-dimensional curved sandwichelement,

the displacement function must be cho'sen such that continuity along

element boundaries must bemaintained and for practical reasons the

presence of a rigid body mode must be assured (in a rigid body mode

there should be no straining anywhere in the region]. The related

minimum potential energy functional requires only the first deriva-

tives in the unknown displacement fields to be evaluated. In the

finite element method, this means that continuity of the displace—

ment field is only required. Based on these requirements, a five

degrees of freedom element has been developed and the displacement

vector is given by (u}= (u w v d w). However due to the shear

properties of the honeycomb care it was found necessary to use at

least seven degrees of freedom per node to achieve a reasonable

representation. The dis 1 cement vector for seven degrees of free—

dom is (u) = {u u; v 0 w w} and the results obtained with this

element are compared with those yielded by the five degrees of free-

dom per node element in the following section.

1:. RESULTS AND CONCLUSION

The finite element solution results quoted here were obtained

for a quarter plate because the plate retains complete symmetry. The

plate was subdivided into rectangular elements and four separate

problems were solved. Table (1) shows a comparison between the

finite element solution and the Lagrange'a multiplier method I2] for

a flat sandwich plate. It is clear that for relatively coarse mesh

sizes, the displacement function incgzporating seven degrees of



 

freedom per node yields results which converge rapidly to the

results given in IEI . 0n the other hand the five degrees of freedom

per node element requires much finer subdivision of the structure in

order that reasonable accurate results are obtained. It may also he

noted that the finite element solution is lower than that of I2I;
this is due to the fact that in the former case, the contribution of

flexural. inplane and shearing motion were taken into consideration
whereas the primary concern in |2I was'only the flexural motion.

Table (2) shove a comparison between the finite element solu—

tion and that of ISI for a singly curved sandwich plate. It 111 be
seen that the finite element solution is lower than that of IS for
both functions used. However it appears that the two theoretical

results presented are not bracketed with the experimental data.

Table (3) shows the central deflection w of a flat clamped

sandwich plate subjected to a uniform load of intensity q lblin .

The results are compared with those published in |10l and [Ill . It

may be recalled that IlOI used the method of successive approxima-
tion while lllI used the finite element method with an element hav—

ing twenty degrees of freedan per node. The results from seven

degrees of freedom element representation shows good agreement with

those given in IllI. ACHDHmGEmT
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Footnote to Teh1e(l):—

a-= 67.75 in, b = 18.5 in, 21.1 = 0.250 in, 112 = 0.016 in, p1 = n.02

x 10-6 1b.se02/in3 92 = 2.he x 10-h 1b.aec2/in§ 0x; = 19500 10/1112,

Gyz = 7500 115/1112, E = 107 111/1112, v =0.31;

Table(2)

Natural frequencies Hz

Finite Element
seven deg. Per

node

Plumblee Results (5)

16 elents
constant strain

56h.h8
69b .38
969.13
1028.72
11ho.5u
1259.8):
1333.12
1582.55
1638.22

3 = 16.5 in, h = 23.00 in, 2111 = 0.372 in, ha“ 0.016 in. 91E 5.25

- 2 ~ 3 -h 2 - 3 . 2
x 10 6 117.5% /1n , 02 = 10.15 x 10 1b.sec /1n , 621 = 180001b/1n

Gyz = 9050 1b/in2, E = 1.62 x 107 112/1112,» =- 0.322, 112 = eh in.

0
.
.
.
.

H
N
N
H
J
D
M
S
H
H

\
n
r
u
r
m
w
u
m
w

v
a
v
—
I
U
V
V
U

 

Table(3)
The central deflection of a square sandwich plate

   

  

Reference

  

0.813

1.71
  

   
0.7h6095 0.801182

1.h9219 1.60236

3 = b = 50 in. 2111 = 1.0 in, 02 =- 0.015 in, 6x: = Gyz = 5000010]

in2. 2 = 107 10/1112, u = 0.30

   


