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Summafl

The finite element displacement method is used to investigate

the free vibration characteristic of curved sandwich beams. Three

displacement models were usedincorporating an element having three,

four and five degrees of freedom per node and various parametric

studies made to investigate their effect on the natural frequencies.

1 . INTRODUCTION

The curved sandwich beam shown in Fig.(l) consists of two com-

paratively thin faces of equal thickness separated by a thick layer

(core) of weak but very light weight material. One of the main

advantages of this type of construction is the large distance between

the faces which means that the core must be rigid enough in a direc—

tion perpendicular to the faces to prevent crushing. Moreover sand-

wich plates and beams are known to possess high resistance to fatigue

failure under acoustic excitation [1-3] . Therefore a knowledge of

the natural frequencies and mode shapes of curved sandwich beams is

important if an understanding of their resistance to acoustic fatigue

is required. In this paper the finite element displacement method

to study the dynamic behaviour of sandwich beams is used; A dis-

placement function having three, four and five degrees of freedom

per node is used. Oneof the elements which utilises four degrees

of freedom per node is used to investigate the various parameters

associated with sandwich construction.

2. POTENTIAL ENERGY. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The free vibration characteristic of a curved sandwich beam may

be analysed by using the principle of minimum total potential energy.

According to this principle the total potential has a stationary

value for any variation 01‘ the dependent variables v and w. The

total potential my be written as:

1|=U+T (1)

where U and T are the total strain and kinetic energy expressions.

These may be written as:
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where t i 32_ .2=_1_..s -?'=Et- - -g—ZEt.B (tcsmzlflcm 1,h't+‘c'
Q1=2tpf+§pe cc; Qz-thf-voctc: (3)

Carrying out the first variation on equations (1) and (2]. as shown
by [5] , equations of motion and boundary conditions may be deduced.

Equations of motion can be written as:
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The corresponding boundary conditions for clamped-clamped sandwich
beam may be written as:

Aty=0andy=s_ 41:0 (6)
V— W

The corresponding boundary conditions for a cantilever sandwich beam
may be written as:

A1: y = 0

— =3—" =I V - w W 0 . (7)

At y = s i.e. at the free end
2

fl = §_“’=oor (2 72fl+252h(2v*h.fl)}=0 (5)
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3. ASSUMED DISPLACEMENT FIELD

The accuracy of the finite element solution for solving struc-
tural‘problems depends mainly on the proper selection of the assumed

displacement field. If the displacement functions are not properly
selected, the results may not converge to the correct solution.

The cirteria given in are that the next to the hiyaest deriva-

tives occurring in the strain energy expression must be continuous '

and also rigid body motion must be adequately represented at least

approximately. Based on these requirements the following three
displacement functions are used:

(a) Three degrees of freedom per node

= + AV A1 2" 2 3 (9)
w = A3 + Ahy‘ 4' Asy + A6y

(1:) Four degrees of frgedom pgr node
v=Al+A2y+A3y +Ahy

3 3 (1°)
V=A5+A6y+ATy 0A8y

(c) Five degrees of freedom per node
_ 2 3

v —Al + A2y + A3y3 + Ahy3 b 5 (11)

v=A5+A6y+ATy 6A8y+A9y+Aloy

The constants (Al, ...A6). (A1, ...AB), (A1, ..:A10) in equations

(9), (10) and (11) may be evaluated at the two ends of the beam in

termsofv,w,a_u;v,3_v,v,fl;v,fl,v,y_, aw respec-
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It can also be deduced that continuity of displacement and radial
slope are maintained for the three elements derived.

h. RESULTS m DISCUSSIONS
The convergence of the solution for the three displacement func-

tions derived earlier with the increased number or elements for a
sandwich beam clamped at both ends is shown in Table l. The mode

shapes are indicated by the number of half Haves occurring for the

radial displacement w. It. can be seen that the finite element solu-

tion converges monotonically from above, andthe two elements incor-
porating four and five degrees of freedom per node-converges very
rapidly even when the number of elements is small. The three degrees
of freedom element appears to be conservative and needs much finer

subdivision of the beam in order that reasonably accurate results
are obtained. Therefore the use of curvature (32w) as an additional

3:!
degree of freedom in element (C) improves the estimate of natural
frequencies and mode shapes even when small number of elements are

used.

As the exact natural frequencies for clamped-clamped or canti—

lever curved sandwich beam are not known, there is no standard of

reference against which the results m be compared. Therefore it is

justifiable to compare frequencies obtained by these elements with

that of straight uniform sandwich beam. Recently [h] computed the
frequencies and mode shapes for a uniform cantilever sandwich beam

and the results are shown in Table 2. The results obtained with the
first two elements converge rapidly with the increased number of
elements to_ that given by [h] . It may also be seen that the_element
incorporating four degrees of freedom per node yields acceptable
results evan for coarse beam subdivision.
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Fig. 1 Curved sandwich beam
- 3 -

 



 

TABLE 1

Natural frequencies (Hz) of clamped-clamped curved sandwich beam.

3 = 28 16., tc = 0.50 in.. c = 0.018 in., E = 10716/1n?,

0c = 1200 1h/in? , pa = 3 x 10'

sec2/in3, % = 0.00595 in:

3 degrees/node h degrees/node 5 degrees/node

6 h
lb.se02/in§, of = 2.h8 x 10- lb.

1 ,

269.91h 266.829 265.369 265.191

556.h79 537.651 528.97h 531.678

975.852 926.278 903.677 921.623

1h72.2h 1379.92 1338.03 1h13.83

2013.81 1670.81 1806.h9 2027.3h 1792.92 1772.8 758.96

2623.h3 2381.53 2293.h7 2921.05 2282.97 2265.6 2215.91

 

TABLE 2

Natural frequencies (Hz) of a uniform cantilever sandwich beam.

Dimensions and material properties are the same as Table l. A =,0.0
1 R

 

   made no
3 degrees/node L degrees/node    

    
   

 

no.0f
element

1 3h.0hh 31.010 33.983 33.973

202.935 201.622 200.729 200.536

529.66h 522.727 518.b7h 517.259

951.211 932.511 921.9h3 918.138

1h31.183 1395.626 1377.005 1368.510

19h1.827 1886.052 1860.201 18hh.203

2h65.95h 2389.757 2359.067 2331.721

299h.001 2896.899 2880.003 282h.088

w MEAD RESULTS [5] I

L "°‘°f - 20 r = 15 r = 10 r = 5
teration r ‘

1 3h.2h2 3h.293 3b.132 30.298

2 201.85 202.38 202.05 20b.76

3 520.85 521.68 527.37 ‘ 523.h6

b 925.ho 925.7h 951.90 823.b0

5 1381.30 1382.10 1h52.00 197h.00

6

7

8
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ex
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no
N

a

 

1867.20 1872.00 2006.00 —

237h.9o 2391.70 2593.10 -     2905.80 2950.20 3972.10 -

._.._.._..____._._.___________._________.__.___
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