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Summery

The finite element displacement method is used to investigate
the free vibration characteristic of curved sendwich bemms. Three
displacement models were used incorporating an element having three,
four and five degrees of freedom per node and various parametric
studjes made to investigate their effect on the natural frequencies.

1. INTRODUCTION

The curved sandwich beam shown in Fig.(l) consists of two com-
paratively thin faces of equal thickness separated by a thick layer
(core) of weak but very light weight material. One of the main
ddvantages of this type of construction is the large distance between
the faces which means thet the core must be rigid enough in a direc-
tion perpendiculer to the faces to prevent crushing. Moreover sand-
wich plates and beams are known to posgese high resistance to fatigue
failure under acoustic excitation [1-3]. Therefore a knowledge of
the natursl frequencies and mode shapes of curved sandwich beams is
importent if an understanding of their resistance to acoustic fatigue
is requiréd., In this paper the finite ¢lement displacement method
to study the dynemic behaviour of sandwich beams is used. A dis-
placement function having three, four and five degrees of freedom
per node is used. One of the elements which utilises four degrees
of freedom per node is used to investigete the various parameters
associated with sandwich construction.

2. POTENTIAL ENERCY, EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The free vibration characteristic of a curved sendwich beam may
be analysed by using the principle of minimum total potential energy.
According to this prineciple the total potential has a stationary
value for any variation of the dependent variables v and w. The
total potential may be written as:

7=U+T (1)

where U and T are the total strain and kinetic energy expressions.
These may be written as:
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Carrying out the first variation on equations (1} and (2) as shown
by [5] » equations of moticn and boundary conditions may be deduced.

Equations of motion can be written as:
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The corresponding boundary conditions for clamped-clamped sandwich
beam may be written as:

Aty =0andy =8
aw {6)
y=w==-——= 0
3y

The corresponding boundary conditions for a cantilever sandwich beam
may be written as:

Aty =0
cw =¥ -
S vesw=o=0 . (7
At y =8 i,e, at the free end
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3. ASSUMED DISPLACEMENT FIELD

The accuracy of the finite element solution for solving struc-
tural, problems depends mainly or the proper selection of the assumed
displacement field, If the displacement functions are not properly
selected, the results may not converge to the correct solution.

The cirteria given in [€] are that the next to the highest deriva-
tives occurring in the strain energy expression must be continuous -
and elso rigid body motion must be adequately represented at least
approximately. Based on these requirements the following three
displacement functions are used:

{a) Three degrees of freedom per node

v = A. + Agy (9)
w=A +Ahy+A5y +A6y

(b} Four degrees of freedom per node
v = Al + Azy + A3y§ + Ahyg (10)
w=A5+A6y+ATy +Aﬂy

(¢} Five degrees of freedom per node
v = Al + Aay + A3y2 + Ahy3 (11)

3 L 5
+ Agy + Aloy .
The con.fsta.nts (Al, “"0‘6)’ (Al, ...AB), (Al, ...Alo) in equations
(9), (10) and (11} mey be evaluated at the two ends of the beam in
terms of v, w, 3W ; v, BY , W, 3 3 V, 3V , W, 3W , 3°W respec-
3y ay 3y 3y Wy FX g

= 3
w-A5+A6y+ATy +A5y

tively.

-2 -




+

It can also be deduced that continuity of displacement and radial
slope are maintained for the three elements derived. .

L, RESULTS AND DISCUSSIONS

The convergence of the solution for the three displacement func-
tions derived earlier with the incressed number of eléements for a
sandwich beam ¢lamped at both ends is shown in Table 1, The mode-
ghapes are indicated by the number of half waves occcurring for the
radial displacement w. It can be seen that the finite element solu-
tion converges monotonically from above, and the two elements incor-
porating four and five degrees of freedom per node' converges very
rapidly even when the number of elements is small. The three degrees
of freedom element eppears to be conservative and needs much finer
subdivision of the beam in order that reasonably, accurate results
are obtained. Therefore the use of curvature (a ) as an additional

. 3y
degree of freedom in element (C) improves the eastimate of natural
frequencies and mode shapes even when small number of elements are
used.

As the exact natural frequencies for clamped-clemped or canti-
lever curved sandwich beam are not known, there is no standerd of
reference against which the results may be compared, Therefore it is
justifiable to compare frequencies obtained by these elements with
that of straight uniform sandwich besm., Recently [4] computed the
frequencies and mode shapes for a uniform cantilever sandwich beam
and the results are shown in Table 2. The results obtained with the
first two elements converge rapidly with the increased number of
elements to that given by {h]. It may also be seen that the element
in¢orporating four degrees of freedom per node yields acceptable
results even for coarse beam subdivisicn.
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TABLE 1
Natural frequencies' {Hz) of clamped-clemped curved sandwich beam.
§ = 28 in,, t_ = 0.50 in., t = 0,018 in., E = 1071b/in?,

G, = 1200 lh/in? » P, = 3x 1\0—6 1b.sec2/in§, Py = 2.8 x lO-hlb.
seeZ/ind, %-= 0.00595 int
mode no 3 degrees/node L degrees/node 15 dégrees/node
no.of
elements T 10 1L L T b T
1 269,914 |266.829|265.389 (265,191 |264,.516|265.35726L 864
2 556,479 |537.651|528.97L [531.678 |524.905(527.523522.807
3 975.852 1926.278{903.677 |921.623 |895.280|890,007887.1k2
h 1472.24 |1379.92(1338.03 |1413.83 [1325.83|1315.321307.97
5 2013.81 |1870.81|1806.4% |2027.3k [1792.92]1772.831758.96
6 2623.43 [2381.53|2293.47 [2921.45 [2282.97|2265.632215.91

TABLE 2

Natural frequencies {Hz) of a uniform cantilever sandwich beam.
Dimensions and material properties are the same as Table 1. 1 = 0.0

R
w 3 degrees/node | I degrees/node
ho.of -
element. 10 1h T 10
1 3b,0bh | 34,010 | 33,983 | 33.973
2 202,935(201.622 200,729 [200,536
3 529.66h (522,727 1518.47h [517.259
L 951.211|932.511 }921.943 |918.138
5 - |1431.183|1395.626[1377.005]1368.510
6 ltgh1 827 [1886.452[1860.201 |18k, 203
T 2L65.954 | 2389, 75712359.067 | 2331, 721
§ 2994 ,001 | 2896.89912880,0031282L,088
mode no. MEAD RESULTS [h]
ite§2liﬁi raz0lr=a5|r=10|r=5
1 3h.2he|  3b.203] 3k.132 34.298
2 201.85 | 202,38 | 202.05 20476
3 520.85 | 521.68 | 527.37 | 523.46
b g25.40 | 925,74 | 951.90 823,40
5 1381.30 [1382.10 [1bs2.00 | 1974.00
6 1867.20 |1872.00 |2006.00 -
T 237h.90 [2391.70 |2593.10 -
8 2905.80 |2950.20 {3472.10 -
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