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lntrod uction

Although several numerical methods including Fast Field. Parabolic Equation and Normal
Mode Solutions are available for predicting outdoor sound propagation over a flat finite
impedance ground. ray trace methods offer greatest convenience both in terms of computation
and physical insight. Traditional ray trace methods cannot allow properly for interaction with
the ground. On the Other hand a heuristic modification of the classical Weyl-Van der Pol
formulation of the total field in the presence of the ground has been advocated for
incorporation in ray tracing codes. By using a WKB method of approximation a closed form
solution to propagation in anam sound velocity gradient has been obtained. In the limit
of zero gradient the solution reduces to the standard form for a homogeneous atmosphere. If
the velocity gradient is linear then it is shown that the solution may be reconciled with the Airy
function form for propagation with upward refraction and the normal mode solution for
downward refraction.

Theory
[ J E. 1 . .

Consider a point monopole source of angular frequency (it placed at (0.0.25) in a stratified
medium near an impedance boundary at z = 0. The speed of sound, c is no longer constant but
varies with the vertical height 1 above the plane boundary. The wave number We is denoted by
k which is a function 2 only as a result of the variation of c in the stratified medium.
Additionally. the boundary surface is assumed to be locally reacting and its specific normal
admittance is given by [3. See figure 1 for the source and receiver geometry,

The derivation of an approximate solution. for a field point situated at 2, above the impedance
plane and a horizontal separation of r was given in ref. [1]. The result is essentially a high ‘
frequency approximation that is based on the ray theory analysis. The result may be
summarised in the Weyl-Van der Pol form as follows.

p = stineikoRl/infil + 5(e)Qe“‘oR2/4nfi2 (1)
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Q = RP + SB(1-RP)F(w)/S(e)

_ cosen-§

P — coseo+B ;

2
F(w) = l+i\/;rwew erfc(—iw) ;

2 l- 2w =21koR2(coseo+B)

COS COS

Sol) = n, cos p, ns cos us

1 1
Sp = a/(l-nfi-WHO-n: 432v.

where the subscripts r and 5 denote the properties at the source plane and receiver plane

respectively.
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We note that o and 9 are the elevation angles (measured from the vertical z-axis) for the direct

and reflected waves respectively. The sign convention of em“ is understood . n is the index

of refraction of the medium that is a arbitrary function of 2 only and the subscripts o and s

denote the conditions at the ground level and the source plane respectively. Further the source

height. z.s is assumed to be greater than the receiver height. 2.,- . The reciprocity theorem

ensures that one can exchange the position of the source and receiver if z..— > 25 . Snell's Law is

used to relate the elevation angle with the index of refraction by.

n sin ti = sin no

where [.1 is the elevation angle of a my launched from the source.

It should be emphasised that equation (1), although an approximate solution for an arbitrary

gradient. is only valid for the condition of a single reflection. This restriction means that our

analysis is restricted to the sound field at relatively short ranges. The sound velocity gradient is

assumed to be small such that there will he no shadow zones. and. more importantly. that there

are no multiple ray paths for the direct and reflected waves in the area of interest

Consequently the analysis in ref. [1] may be applied in our present situation.

[NH] 1 .. [I I]. m.

The expression for the total sound field given in equation (l) is a first approximation in which

terms of the order of ilko and above are ignored. The approximation for the reflection
coefficient R becomes increasingly inadequate when the source and receiver are close to

ground and e impedance is sufficiently high. This can be traced back to the approximation

used in the solution of the transformed pressure wave equation.

It
2 2 " '

37% + k0 N2 p = - 5(2-15) (2)

where N = \l n2 - cos no

= n cos It

The transformed pressure is related to the solution for the sound pressure by

..
I A

p = ;f Homopdk
0
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The approximate solution used in Eq. (2) included terms in cxp(:ikoL)l'\/fi which represent

sets of two non-interacting waves. namely the outgoing wave and the incoming wave, with

higher order terms being ignored. These terms can be expressed more accurately2 by a power

series of k0 in the form of Hie-“(OLIVE and F eikOLA/fi respectively, with

me) =. 2 (aw—"49’—
q=0 (i ko)‘; ' (3)

 

_ l Alp.) A712) Aggz)

‘ ‘ iko + (“(0)1 ' (“(0)3 +

Face) = 2M
q=0

(i ko)q ' . (4)

_ Am) A2(z) Aggzg
_ l + iko + (“(0)2 + (“(0)3 + . . . . ..

We note that A0 is equal to l.

l

L = f 14(ng . (5)
o

Aq+1(z) = -%fi%’4 + f A(z>Aq(z)dz (6)

1 d2 1
and A(z) = -%W;2'(Tfi) _ (7)

If the term of (like) is included, the reflection coefficient can be recast as.

_ cos - 8

_ 5°5No+Ba ()
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where Ba is theWadmittance given by

pa =p+i[Q;-§:-NOA,]/ko . (9)

and A] represents Ai(z)ll =0 and Ba tends to B at high frequencies. The second term of Eq. (9)
may be regarded as a correction factor due to the presence of a sound velocity gradient.

The foregoing development of ray theory in outdoor sound propagation was based on an
arbitrary sound speed profile. It is apparent that the sound field depends critically on this

profile in a vertically stratified medium. through Eq. (1). We can evaluate the path lengths and

the angle of incidence provided that the sound speed profile is specified as a function of
vertical height. It is convenient to consider a simple idealised situation where the speed of
sound varies linearly with the vertical height.

There are two advantages of assuming a linear sound velocity profile. Firstly. the use of the
linear profile leads to circular ray paths3 and it is relatively easy to 'trace' the direct and

reflected waves. Secondly. there is an exact theory of propagation in a linear radient where

the solution can be expressed in terms of Airy functions and their derivatives . This solution

can be used to compare with that result from the ray theory approximation presented here.

In a stratified medium with a linear sound velocity profile, the speed of sound c and the index

of refraction n are simply given by

c = co(l+az)

l
l+nz

 

and n

where a is the normalised sound velocity gradient given by

1 tie
a = C0 ( dz)

In general, the normalised sound velocity gradient is small such that N may be approximated

by

N = \l (1 -Zaz) - sit-.211o . (10)
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We note that a negative sound velocity gradient corresponds to an upward refracting medium.

whilst a positive value corresponds to a downward refmcting medium. The solution of Eq. (2)

can be expressed as

a _ i { explikngLs- LE" + R exp ikajLs +I_.:2[] (1])

Rex/N‘s W: W: '

It is obvious from Eq. (IO) that

N0 = cos no and N6 = llcos no . (12)

Using Eqs. (5) and (10), LT and L5 can be easily calculated Integration shows that

L‘. = -3l—a( cos3u° — [cosztto - 231,]3/2 ) (13)

and L8 = S—lai cos3uo - [cosztto- 221251312 ) ~ (14)

Further A1 can be evaluated. by using Eq.(6). to give

A1 = -5a/(24 cossug) , (15)

Substitution oqus. (12) and (15) into (9) leads to

[3a = a - 7ia/(24k0coszpo) . (16)

The transformed pressure given in Eq. (11) can he recast as

iexg! i 159[ C033!“ - (coszgn - 23_zs)3/2 ] Illa! x
1/4

s]

A
P =

21:0 [coszuo - 2a:

{ exgg -i 159[cos3gn - (ensign - 2az)3’2 ma)
[cosztto - 2111]“4

cos En - Ea x exp! i kn ::os3|._tfl ~ (coszgn’ - 2312312 Ba} (17)

cos “a + Ba [coszuo - 2n)“4 .
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where Ba , the apparent admittance. is given by Eq. (16). Equation (17) represents an

approximate solution for the transformed pressure in a linear sound velocity gradient above an

impedance plane. We now outline an exact solution for this quantity.

The reduced wave equation, where N is approximated by Eq. (10), has a solution in terms of

the Airy functions and their derivatives.4 By imposing the boundary condition at z = 0. the

particle velocity discontinuity and pressure continuity condition at the source plane, and the

Sommerfeld radiation condition at infinity. the solution of Eq. (2) can be written as.

3 = 4:: (2a x?) am5 an {Ito/23)?” (coszuo- ms) 1 x

(AiI -(-kn/2a)"’ (cos’uo- 2az)] - rut.) Ai[ -(k,12a)“’ (cos’uc- 2az)] ). (18)

The first and second terms of the above equation may be identified as the direct and reflected

waves respectively and l‘(u°) is defined as the reflection factor5 as follows.

(450139713 Ai' [-(-kQLZa)1’3 coszgnj + (ikngza) Ai [-cknpagm cos2g91

“W = (kOIZa)2/3Ai' [-(ko/Za)2’3coszuo] +(ik0B/2a)Ai [-(ko,2a)2/3 cmzpo] (19)

The primes in Eq. ()9) are their derivatives with respect to their arguments.

Principal values should be chosen for the complex roots in s. (18) and (19). It is interesting

to note that separate expressions, as suggested by Rasmussen . are not required for a different

sign of the sound velocity gradient. Equation (19) is an unified expression that can be reduced

to the form used by .for example. Raspet et. 01.5 for a positive sound velocity gradient and to

that used by, for example, Daigle and Berry7 and Raspet ex. (11.8 for a negative gradient.

The transformed pressure can be expanded in its asymptotic form by using the following

asymptotic expansions for the Airy function and its derivative9.

Ai(z) a £1er 2‘“ at E (-1)k ck g-k
o

and Ai'(z) = %r% z'/‘ e-t “g (-1)k ctk g—k
o
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where C =

ck = (2k+l)(2k+3)...(6k-l)/216k k! ,

dk = -ck (6k+1)/(6k-1) .

k =1.2.3.

and largz|<7r.

After some algebraic manipulations, it is not difficult to identify the reflection coefficient from

the reflection factor 1-010).

(1-d1§]l)cosuo-B 2
R = -———— + 0(1Ik0) . (20)

(i-dlg‘mspow

where Q] = (-ikocos3po/3a) ,

c2 = (i kocos3u013a) .

By making use the definition of ck and dk, we can show that Eqs. (8) and (19) are identical
expressions for the reflection coefficient. In addition, it can be checked that the transformed

A

pressure p given in Eqs. 07) and (18) are identical. It is reassuring to start with anexact
analysis and to end with the same expression as the my theory approximation.
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Concluding Remarks

A WKB method of approximation has been used to derive a computationally straightforward
solution for propagation in an arbitrary sound velocity profile above an impedance plane. To
improve this solution for high impedance and grazing incidents a second order approximation
for the reflection coefficient hasbeen obtained. This introduces an effective admittance for the
boundary which depends on the index of refraction at the ground. '

For the case ofa linear sound velocity profile the ray based approximation has been shown to
be identical to the asymptotic form of the exact solution in terms of Airy functions. The latter
has been presented in a form which is valid for either upwards or downwards refraction.

Current work is concerned with establishing the accuracy 01' the ray based approximations by
comparing them with full wave numerical solutions and with experimental results.
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Figure l : The source/receiver geometry in a stratified medium.
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