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INTRODUCTION

The acoustic. analogy of Lighthill {i} and in particular its application to sound generated by surfaces in
arbitrary motion by Ffowcs Williams and Hawkings [2] has been an extremely useful tool in estimating
the aerodynamic sound generated by propellors and rotors. Although the Ffowcs Williams-Hawking
(FW-H) equation is intended for the prediction of the acoustic field given the aerodynamic field
around the body. i.e. the acoustic analogy. the equation is an exact rearrangement of the mass and
momentum conservation equations and can be used to recover the aerodynamic field near the body
which is generating the sound as well. This relatively new idea has been attempted by Farassat and
Myers [.1], Long [4], and others.

In general practice. only some abbreviated form of the FW-H equation is used. One approximation
to the l-‘W-H equation which has often been applied for both acoustic and aerodynamic work is one
in which the quadrupole source term has been ignored. It has been argued that the quadrupole term
may be neglected for certian conditions for which the turbulent flow region is small [5]. however,
probably the most fundamental reason it is left out is because it requires a detailed knowledge of the
flow field around the body in advance. Without detemrining the entire flow field, and quite possibly
the desired acoustic quantity, the volume necessary to adequately describe the quadrupole source is
unknown, although reasonable guesses can be made. None-the-less, difliculty in obtaining a source
term is little justification for the neglecting that term. Indeed Hanson and Pink [6] as well as Schimtz
and Yu [7] have shown for high speed rotating blades that the quadrupole source is very important
even though good results can be achieved in other operating ranges without the quadrupole.

in an client to gain a new understanding about the quadnrpole in both acoustic-and aerodynamic
applications, some sample problem have beenchosen for which the flow field can be determined
analyticafly using the two dimensional velocity potential. in the case of the circular cylinder, each
of the source terms are calculated separately and compared with the exact potential solution. The
forces on the cylinder due to pressure are compared as well. This problem helps to explain the results
and dificulties of Brandao[8.9).

The circular cylinder solution suggests a new description of the quadrupole term which Is useful
in identifying the volume and surface terms immediately from the exact solution. This Is applied
directly to find the relative source contributions for a Joulrowsiri airfoil. Following this, the problem
of a circular cylinder moving near a vortex filament is examined as well. Each of these cases illustrate
the various roles of the volume source terms for incompressible flows. Another consideration of the
role of quadrupole sourcel for exact compressible flow problems is given by Ffowcs Williams {to}.

PROBLEMS WITH EXACT SOLUTIONS
T e ' cular

One of the most wdl know exact potential flow solutions is that for a circular cylinder ln an inviscid.
incompressible flow. ThisIs such an important flow because the solution can be extended to a variety
of other problems using conformal mapping of the complex velocity potential. Similarly. if can em
understand the components of the flow as given by the F'W-H equation. there is hope that these
results our be transformed to give some idea to the behavior of each source term for a Jonhowuhl
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airfoil. Indeed this has essentially been done in this paper. Brandiw [8.9] has also used the circular

cylinder problem in his development of an nerodynamic theory based on the FW-l-l equation, so

comparisions can he made with his results.

Velocity Potential solution- The velocity potential for a circular cylinder of radius a, in a frame of

reference in which the cylinder is moving. is unsteady and known to he

, .
_d(x.t)=—g:v(l)-!—l;—: (1)

where no are the polar coordinates of x. v(t) is the velocity of the cylinder center, K is the hound

circulation on the cylinder and e is a unit vector‘in the x direction. The perturbation pressure. given

by the Bernoulli equation. is then written
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Here on = V~P and II; = Iv /. H since i is also an outward unit normal v'ector to the surface. The terms

are written out so that they may be compared with the solution gained from the FW-H equation.

Acoustir Solution— The Ffowcs Williams-Hawking equation may he written

v'( 'Hm}— 3’
P d 01.19:,-

for an innviscid, incompressihle llow and where the derivatives are assumed to he generalised. "(1)

and 6(1) ore the the Heaviside and Dirac delta functions respectively, and the three source terms are

known as quadrupole source. loading source, and thickness source terms respectively. The function

I = 0 is an equation which describes the body surface and shall be defined such that V! = a, which

is the outward unit normal vector.

 

(mujfllnl + 3%.,{p'n,-nn) ~ %lfiovn6(!)} ‘ (a)

The solution can be obtained using the Green's function for the Laplace equation and since the

exact solution for pressure and velocity are known and the geometry is simple, each Green's function

integral can be calculated analytically. When this is done. the pressures obtained are written

 

'3 1

A=§{:1(vz—v3)+“7§4} (a)
I I

ri=;{‘:—,(v: v.’ “—%-*—’f,”' (7)

“d , o‘ Ku2 K’
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Here the suhscrlpts t.i, and 1 refer to the thickness, loading and quadrupole contributions, respec-

tively. It Is immediately clear when comparing equations (6-8) with the potmtlal solution. equations

(3.4), that the thickness and loading sources correspond exactly to -pd¢/dt and the quadrupole

contribution corresponds to —§pu'. This is an intensting finding and warrants furtha exploration

to determine if this cunnpondenoe can he generalised.
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Fortes on the Cylinder— Notice in equntions (Ii-8) that the total far-field solution is given by the
thickness and loading. however in the case with circulation, K yé 0, the quadrupole contribution
can he as important as the thickness term. The quadrupole serves to provide a near-field pressure
correction to‘ the thickness and loading pressures. Figure I shows the rel-tiVe contributions of each
of the source terms for a cylider with circulation.

The force on the cylinder can now be easily calculated hy integrating the pressure over the cylinder
surface. The force per unit length is the found to he -

r=e.+r.'+l?. ‘ ' (9)
where

l dv
Pr = ‘5I’cfi (10)

l dv l .
F1= ‘59:] + 5P5“ 4 iii , (“l

r, = %pll'(v v E) (I?)

"are p: = pir'o which is the virtual mass of the cylinder and it = h .( t. The force composed
of F1 nnd the first term of F. is due to and opposes the necelerntion of the cylinder while the
force composed of 1'".I and the second part of I". is due to circulation. It is Appnrent thst the force
generated by acceleration of the cylinder is independent of the quadrupole. but one half of the force
tiue to circulntion is given by the quadrupole term. This ilnplies thnt if the FW-ii equation is to he
used for aerodynamic calculations, the quadrupole may be important for steady lifting problems.

A New uadru ole Descri tion

Before a more definitive stntement is made, let us first return to examine the wny in which the
quadrupole term was simply related to ipu’. With no loss of generality the volume term in equation
(5) can be rewritten

1

72:9,). {Pu-Wm”) =V'iéeu'fltfll + pV- {(C x u + “V . umm)

i
+PV-((un\l- Eu’filfllll (13)

where ( = V x u. is the local vorticity of the fluid. The surfncc term arises from the generalised
gradient of EU), Mil). The second term on the right hnnd side (RHS) is zero for an lrrototionai
V x u =0). incompressible (V - u =0) flow. This quadrupole expression explicitly sepnrotes the
pol pnrt from the other parts. it is Also useful to rewrite the thickness term

gonna!» = -v - lmvfllll + % - Mm (14)
whlch puts the steady part of the thickness term in a form simllu to port of the surface term In
equation (13). The FW—Il equation my now be written

V'iPlHU” = - V’GW'HU” - V'((( X “Willi - V ' (PU-i“ - 'l‘lfll

+ v . ((9! Jr; 1mm) _ § . Mm (15)
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b) Thickness conlxibulion fl,

 
c) Ming ennmbulion p; d) Quldmpoll contribution pf.

“gun I. The pemuhuion presume to: I low mnnd I cilqu :ylindel. India a = 1.0. with - velodly

v = 1.0. and dial-um: K = I.
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This new equation is similar to Powell‘s theory of vortex sound [H] where the quadrupole source region
is identified with the vorticity of compact eddies in the flow. The second source term in equation (15)
is restricted to the region in the flow where the vorticity is nonsero. while the third source term is
written in terms of a vortex sheet of strength In — v. over the surface, since II — v = (u. — uni onthe
surface. Equation (15) suggests writting the FW-H equation in temn of the variable 8 = p’ + hm"
which is the p = contont form of the variable B Howe [12] used for his nonlinear analogy. This
variable then eliminates the volulue source terms if the flow is irrotational everywhere outside of
f = 0. Now the contribution to p‘ from the volume source is —lpu'. exactly as in the case of the
circular cylinder. in the following problems, it will he possible to calculate the exact potential solution
and then directly identifythe volume andsurface contributions to the form of the FW-ll equation
given in equation (15).

Aemrlynamic Implications- Actually the distinction between the quadrupole source of equation (5)
and the volume source terms of equation ([5) is an important one. if the variable 3 is used along
with the three dimensional Green‘s function for the Laplace equation in unbounded space. an inteyal
representation of equation (l5) can be written

1 Bis-i _ 1 plv"(u—v)-P l dv am
“Ti/7‘45""; ‘e—‘S'r. 27'“,

[=0 [=0 [=0

 

d5 (16)

’This is a singular l-‘redholm integral equation of the second kind for the unknown variable B. for
which the solution is desired. in (8], Brandio has derrived a similar equation in which the quadrupole
(of equation 5) and unsteady terms Were neglected In that case, B is replaced by [I and the u- E
tenu is dropped from the HHS, whereas if the volume terms and unsteady term of equation (15) are
neglecetl. the only change to equation ([6) is that the variable B is reduced to Without the full
Hits of equation [16). Farassat and Myers/3] have shown that the angle of attach problem becomes
an eigenvalue problem and cannot be solved. as [8] confirms through experience. This is true because
the term I: —- v on the RHS of equation (16) represents the the local vorticty on the surface due to
the boundary layer and any bound circulation. [f the n - r term is neglected, then no mechanism is
available to generate the lift.

The ouhowshi irfoil

Now consider the cue of a Joukowslu' airfoil in incompressible flow. The exact solution is readily
obtained using the Jouhowshi transformation. ( = z+ 1/ z, to transform the complex velocity potential
w(z) for the circular cylinder. The perturbation pressure if can be written

1! = -§plj—‘;’I' + “vi—'2) (n)
where the airfoil has a steady complex velocity V = v(cos o +i'sin a) and div/dc is the conjugate of the
complex fluid velocity. The value for dw/d( is most easily obtained by transforming the solution for
the circular cylinder with a freestream moving past into the ( plane and then subtth the freestreasn.
This gives

d—W_=(‘__V_",++}£_V ([3)

where V is the conjugate of V and z. is the center of the circular cylinder. From the previous
discussion. it is clear that the volume source contribution of equation (15) is —§pu’ = —§p|dtl.t/d(|I
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a) Surface source contribution to p' b) Volume source contribution to p'

Figure 2. The perturbation pressure components for a flow (I) = 1.0) about a Joukowski airfoil (a = 1.13.
z. = —.ll+.10i) u a = 5deg.

while the surface source contribution is given by —pd¢/dt = Re(de/d(). In Figure 2, the relative
contribution ofthe Volume and surface sources for a cambered airfoil at angle of attack are compared.

Clearly for the thin airfoil of figure 2, the volume source term is small except nea‘r theistngnation
points. This observation is in fact the basis of thin airfoil theory for which p‘ is approximated as

Ml
P z #33 (19)

which is exactly the contribution from the surface source terms in equation (15). Therefore, neglecting
the volume terms is justified by the same assumptions used in thin airfoil theory, and conversely, the
volume source should not be neglected if the pressure field near a thick body is desired.

   i uln ' ‘nd w' a te

As a final example, consider a circular cylinder moving past a vortex in the viscinity of the cylinder.
In this case the complex velocity potential can he found using the Milne-Thompson circle theorem to
he the smn of the velocity potential of the cylinder alone, a vortex of equal strength to the free vortex
at the center of the cylinder and a vortex of equal strength and opposite sense at the image point
z; = 111/2], if z; is the complex coordinate for the image vortex. The complex velocity potential for
the problem is

—Vuz + i(K + I‘)ln(:) + il'ln(z '— 21) _ I'I‘ln(z — :2)
“’(z) = 2 2n 21r 21r fl")

after dropping a constant. The pressure p‘ is then found to he

1 do) a dwp _ —§pl?z—| —pRe(—E (21)
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n) Exact polenlihl solution for p‘ b) Approximate solution pi = —pd¢/dl

Figure 3. Comparison ofp' and —pd¢/dl for a circular cylinder moving in proximity to I free vortexr (V = L0,
K = 2.0. l‘ = -2.0. Vortex position (",9.) = (2‘, 15 deg.) )

  

where d V 2 ( ) F v
w _ a i K + r i _ 1 v2
dt _V(_ 22 + 21rz )+27r (Z—Z])+(Z—12)) (22)

and V1 and V; are the complex velocities of the free and image vortices.

This particular problem highlights a situation where the second Volume term in equation (15) must
not be neglected. Since the vorticity is concentrated at the point x], the vorticity vector C can be
written [‘6(x —- x1 )lt where I‘ is the strength of the vortex and R is the unit vector it X t. The pressure
contribution due to the second term in equation (15) may then be written

,_i /. _ Fl‘rxulxI-(x—xl)
pv _ 2WV l'k X u6(y yl)ln Ix yldy _ — Zwlx _ XIII (23)

v

If this result is rewritten in terms of complex variables it becomes

, _ iI‘l’1
P" _ _21r(z — :1) (24)

which is recognized irrunediately in equation (22). The acoustic solution can he thought of as that
for the circular cylinder alone, with circulation (K + I‘), superimposed with the solutions {or the free
and image vortices. A logical approximation to the volume source is to again neglect the %/m2 part
ol'p' and only include the ell'ects of the free and image vortices as given by equation (24). Figure 3
shows just this approximation compared to the full exact solution. This type of approximation is not
obvious directly from equation (5).
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CONCLUDING REMARKS

The aim of this paper has been to gain more understanding of the importance of the quadrupole
source in the FW-H equation. Incompressihle flow about both thick and thin bodies has been con-
sidered. The circular cylinder problem has shown that the thickness and loading contribution to p' is
proportional to tip/d! when the potential d is written in a frame of reference fixed to the undisturbed
medium. The quadrupole contribution is just —§pu’ in this frame. This result is true generally. for

inviscid, incompressible flows, if the quadrupole is reorganized in to the form of equation (13).

With the incompressible FW-H equation in the form of equation (15), the perturbation pressure

solutuion, p‘, may be safely approxirpated by the surface source terms alone away from the body.

Near the body and especially on the body surface, as is the case for aerodynamics, the surface

sources alone in equation (15) are equivalent to thin airfoil theory. Thus the volume sources need to

be included for aerodynamic calculations around thick bodies. It is important to distinguish between
the neglecting the quadrupole term in equation (5) and the volume source terms in equation (15)

since the vorticity needed for steady lift generation is found to be the difference between the two

assmnptions. This understanding of the FW-H equation as applied to incompressible aerodynamics

is believed to be new. V

It has also been seen in this paper, as Powell has shown previously, that the vorticity in the fluid can

he considered the acoustic pressure generation mechanism. This View identifies the source regions as

vortices, boundary layers, excess vorticity generating lift, and wakes, which are tangible features in

the flow. As in the case of the cylinder in the viscinity of a vortex, it should be possible to model

regions of vorticity in the flow separately for acoustic calculations.
REFERENCES

[1] Lighthill, M. J.. "On Sound Generated Aerodynamically," Proceedings of the Royal Society. Series A.

Vol. 211, 1952. pp. 564-587.
[2] Ffowcs Williams. J. E..nnd Hawkings, D. I... "Sound Generated by Turbulence and Surfaces in Arbitrary

Motion.” Philosophical Transactions of the Royal Society, Series A, Vol. 264, No. 1151. 1969, pp. 321-341.

[J] Ferassa't, F. and Myers. .M. K., "Aerodynamics via Acoustics: Application of Acoustic Formulas for

Aerodynamic Colculotions." AlAA piper 86-1371, 1986.

[4] Long. L. N., “The Compressible Aerodynamics of Rotating Binds Based on In Acoustic Formulation,"

NASA T? 2197'. 1983‘
{5) Far-seat, F.. “Theon of Noise Generation from Moving Bodiu with an Applicltion to Helicopter Rotors.”

NASA TR R45], 1915. '

[8] Hanson, D. B. and Fink. M.. "The Importance of Quadrupole Sources in the Prediction of Tnnsonic Tip

Speed Propeller Noise," Journal of Sound and Vibration. 62(1), 1979. pp. 19-38.

[T] Schmits. P. H. and Yu. Y. EL, “Transonic Rotor Noise - Theoretical and Experimental Comparisons.”

Vertica. Vol 6. 1981, pp. 66—74. I .

[a] Brandio. M. P., “A New Perspective of Classical Aerodynamics," Proceedings of the AlAA/ ASME/

ASCE/AHS Nth Structure. Structural Dynamics. and Materials Conference, Paper AlAA-81-0353-CP. Mon-

terey. California, April 0-8. 1987. '

[9) Brundio. M. P.. "A New Method for the Aerodynamic Analysis of Lifting Surfaces.” Presented at the

Thirteen European Rolorcraft Forum, Sept. 8-11. 1987. Paper 2-3. ‘

[10} Ffowcs Williams. J. E.. “ On the Role of Quadrupole Source Terms Generated by Moving Bodles.” AlAA

79-0576, 1919.

[ll] Powell. A.. “Theory of Vortex Sound." Journal ol'lhe Acoustical Society ofArnerica. Vol. 38, No. 1..

1964. pp. 111-195. .
{12} Howe, M. 5.. “Contributions to the Theory of Aerodynamic Sound with Applications to Excess Jet Noise

and the Theory of the Flute," Journal of Fluid Mechanics. Vol. 58, 1973. pp. 625-673.

824 . ProcLOA Vol 10 Perl 2 (1988)  


