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INTRODUCTION

The acoustic analogy of Lighthill {1f and in particular its application to sound generated hy surfares in
arhitrary motion by Flowes Williama and Hawkings [2] has been an extremely useful tool in estimating
the aerodynamic sound generated by propellora and rotors. Although the Ffowes Williams—Hawkings
(FW-H) equation is intended for the prediction of the acoustic field given the aerodynamic field
around the hody, i.e. the acoustic analogy, the equation is an exact rearrangement of the mass and
monentuin conservation equations and can be used Lo recover the aerodynamic field near the hody
which is generating the sound as well. This relatively new idea has been attempted by Farassat and
Myers (3}, Long [4], and others.

In general practice, only some abbreviated form of the FW.H equation is used. One approximation
to the FW-H equation which has often heen applied for hoth acoustic and aerodynamic work is one
in which the quadrupole source term has heen ignored. It has heen argued that the quadrupole term
may be neglected for certian conditions for which the turbulent flow region is small {5, however,
probably the mest fundamental reason it is left out is because it requires a detailed knowledge of the
flow field around the hody in advance. Without determining the entire flow field, and quite possibly
the desired acoustic quantity, the volume necessary to adequately describe the quadrupole source ia
unknown, although reasonable guesses can he made. None-the-less, difficulty in obtaining a source
termn is little justification for the neglecting that term. Indeed Hanson and Fink [6] as well as Schimtz
and Yu {7} have shown for high speed rotating blades that the quadrupole source is very important
even though good results can be achieved in other operating ranges without the quadrupole.

In an effort to gain a new understanding about the quadrupole in both acoustic and serodynanic
applications, some sample problems have been chosen for which the flow field can be determined
analytically using the two dimensional velocity potential. In the case of the circular cylinder, each
of the source terms are calculated separately and compared with the exact potential solution. The
forces on the cylinder due to pressure are compared as well. This problem helps to explain the resulta
and difficelties of Brandao[8,9).

The circular cylinder solution suggests a new description of the quadrupole term which Is useful
in identifying the volume and surface terms immediately from the exact solution. This Is applied
directly to find the relative source contributions for a Joukowski airfoil. Following this, the prohlem
of a tircular cylinder moving near a vortex filament is examined as well. Each of these cases illustrate
the various roles of the volume source terma for incompressible lows. Another consideration of the
rale of quadrupole sources for exact compressible flow problems is given by Ffowcs Williams | 10].

PROBLEMS WITH EXACT SOLUTIONS
The Circular
One of the most well know exact potential ow solutions is that for a circular cylinder in an inviseid,
incompressible fiow. This is such an important flow because the solution can be extended to a variety
of other problems using conformal mapping of the complex velocity potentinl, Similarly, if one can
understand the componenis of the flow as given by the FW-H equation, there is hope that these
results can be tzansformed to give some idea to the behavior of each source term for a Joukowski
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airfoil. Indeed this has essentially been done in this paper. Brandao [8.9] haa also used the circular
cylinder problem in his development of an aerodynamic theory based on the FW.H equation, 20
comparisions can be made with his results.

Velocity Potential Solution- The velocity potential for a circular cylinder of radins a, in a frame of
reference in which the cylinder is moving, is unateady and known to be
a? . Ké
_¢(x.tl---':-v(t)-i—2—r (l)

where r,8 are the polar coordinates of x, v(t) is the velocity of the cylinder center, K ia the hound

_circulation on the eylinder and F is & unit vectorin the x direction. The perturbation pressure, given
by the Bernoulli équation, is then written

i_ _ 1 3 d¢
P=P=Po= -3 ~ Py @
where
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Here vq = v-F and v = |v « E} since # is also an outward unit normal vector to the surince. The terms
are written out so that they may be compared with the solution gained from the FW-H equation.

Acoustic Solution— The Ffowes Williama-Hawkings equation may he written
. a 4 ,, a
v H(N}= -m(mﬂjﬂlﬂ) t 9 {F'niét)} - 5 {Pavnb(£)} ~(8)

for an innviscid, incompressible flow and where the derivatives are assumed to be generalized, H{f)
and &( f) are the the Heaviside and Dirac delta functions respectively, and the three source terms are
known as quadrupole source, loading source, and thickness source terms respectively. The function
f = 0 is an equation which describes the body surface and shell be defined such that V£ = f, which
is the outward unit norinal vector.

The solution can be obtained using the Green's function for the Laplace equation and sinee the
exact solution for pressure and velocity are known and the geometry is simple, each Green's function
integral can be calculated analytically. When this is done, the pressures obtained are written

| 2
o= oG-+ 25 ®
2 2
R R R ®
and
. 4 K ] K!
7= -5{5v+ ut ) (®)

Here the subacripts ¢,], and g refer to the thickness, loading and quadrupole contributions, respec-
tively. It Is immediately clear when comparing equations (6-8) with the potentlal solution, equations
(3,4), that the thickness and loading sources correspond exactly to —pd¢/dt and the quadrupole
contribution corresponds to —§pu’. This is an interesting finding and warrants further exploration
to determine if this correspondence can be generalised.
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Fortes on the (ylinder— Notice in equations (6-8) that the total far-field solution is given by the
thickness and loading, however in the case with circulation, & # 0, the quadrupole contribution
can bhe as important as the thickness term. The quadrupole serves to provide a near-field pressure
correction to the thickness and loading pressures. Figure | shows the relative contributions of each
of the source termns for a cylider with cizeulation. .

The force on the cylinder can now he easily calculated hy integrating the pressure over the cylmder
surface. The force per unit length is the found to be

F=F:+F]+?¢ ' . (9)

whete
1 dv
Fl——‘Pcdt . (1a)

1 dv
F; = ‘.EP:E

PK(v » k) (12)

+ %ph’{v « k) . (1)

1
Fq= 3
Here p, = px?a which is the virtual mass of the cylinder and k = A < t. The force composed
of Fy and the first term of F; is due to and opposes the acceleration of the cylinder while the
force composed of F, and the second part of F; is due to circulation. It is apparent that the force
- generated hy acceleration of the cylinder is independent of the quadrupole, but one half of the force
due to circulation is given by the quadrupole term. This implies that if the FW.H equation is to be
used for aerodynamic calculations, the quadrupole may be important for steady lifting problems.

A _New Quadrupole Description

Before a more definitive statement is made, let us first return 1o examine the way in which the
quadrupole term was simply related to ,pu’ With no loss of generality the volume term in equation
(5) can he rewritten

2
%&j{pwuﬂ(!l} =V (3o H(f)} + 69 {(€ x u +u¥ - w)H())

+69 - {(sau - 2u2A)8()} (3)

where { = V x u, is the local vorticity of the fluid. The surface term arises from the generalised
gradient of H(f), a&(f). The second term on the right hand side (RHS) is sero for an irrotational
V x w = 0), incompressible (V. u = 0) flow. This quadrupole expression explicitly separates the
3 pu? part from the other parts. It ia also useful to rewrite the thickness term

ﬁ{nmﬂf}} ==V {omvé(f)} + '3 - hé(f) (14)

which puts the steady part of the thickness term in a form similar to part of the surface term In
equation (13). The FW-H equation may now be written

VPH() = - V{30 AU} - 9{(C X WH) - V- {pom(u - IS()
9 + Jpa 0N} - S -0i1) |

Proc.l.O.A. Vo' 10 Part 2 (1988}




Proceedings of The Institute of ‘Acoustics

THE EXACT CALCULATION OF QUADRUPOLE SOURCES

b) Thickness contiibution g}

¢} Loading contribution p; d} Quadrupole coniribution p"

Figare 1. The perturbation pressure for a flow around s cirular cylinder, radine a = 1.0, with & velocity
v = 1.0, and circulation ¥ = x.
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This new equation is similar to Powell's theory of vortex sound [i1] where the quadrupole souree region
is identified with the vorticity of compact eddies in the flow. The second source term in equation {15)
is restricted to the region in the flow where the vorlicity is nontero, while the third source term is
written in terms of a vortex sheet of strength ug — vy over the surface, since u — v = {y; — ;)i on the
sutface. Equation (15) suggests writting the FW.H equation in terms of the variable B = p' + }pu’
which is the p = contant form of the variable B Howe [12f used for his nonlinear analogy. This
variable then eliminates the volume source terms if the flow is irrotational everywhere outside of
f = 0. Now the contribution to p from the volume source ia —ipu’. exnactly as in the case of the
circular cylinder. [n the following problems, it will be possible to calculate the exact potential solution
and then directly identify the volume and surface contributions to the form of the FW.H equation
given in equation {15).

Aerodynamic Implirations- Actually the distinction between the quadrupole source of equation (5}
and the volume source terms of equation (15) is an important one. If the variable B is used along
with the three dimensional Green's function for the Laplace equation in unbounded space, an integral
representation of rquation {15) can he written

1 Bk, 1 pra{u—v). ¢ 1 dv _6(f)
- [ Thds= - f et Fas - = [ = atls (16)
f=0 =0 =0

" This is » singular Fredholm integral equation of the second kind for the unknown variahle B, for
which the solution is desired. In {8}, Brandéo has derrived a similar equation in which the quadrupole
(of equation 5) and unsteady termns were neglected. In that case, B is replaced by p' and the u- ¢
term is dropped from the RHS, whereas if the volume terms and unsteady tetmn of equation {15) are
negleced, the only change 1o equation (16} is that the variable B is reduced to p'. Without the full
RHS of equation (16), Farassat and Myers{3] have shown that the angle of attack problem hecomes
an eigenvalue problem and cannot he solved, as [8] confirms through experience. This is true because
the term w — v on the RHS of equation {16) represents the the local vorticty on the surface due to
the bhoundary layer and any bound circulation. If the u . F term is neglected, then no mechanism is
available to generate the lift.

The Joukowski Airfoil

Now consider the case of a Joukowski airfoil in incompressible flow. The exact solution is readily
ohteined using the Joukowski transformation, { = z+1/z, to transform the complex velocity patential
w(z) for the cireular cylinder. The perturbation pressure p' can be written

_ 1  dw ] : dw
where the airfoll has a steady complex velocity V = v(cos a+1sin a) and dw/d( is the conjugnte of the
complex fluid velocity. The value for dw/d( is most easily obtained by transforming the solution for

the circular cylinder with a [reestream moving past into the { plane and then subtract the freestream.

This gives ,
dw Va iK d¢
V- otre-wa "’

(18)

where V is the conjugate of ¥ and z, is the center of the circular cylinder. From the previous
discussion, it is clear that the volume source contribution of equation {15) is —}pu’ = -ip’|dw/d(|’
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a) Surface source contribution to p' b) Volume souzce coniribution to p'

Figure 2. The perturbation pressure components for a flow (v = 1.0) about a Joukowski airfoil (s = 1.13,
2o = =.11+.107) at a = Sdeg.

while the surface source contribution is given hy -pd¢/dt = Re(Vdw/d(). In Figure 2, the relative
contribution of the volume and surface sources for a caml)ered airfoil at angle of attack are compared.

Clearly for the thin airfoil of figure 2, the volume source term is small except near the' stagnation
points. This observation is in fact the basis of thin airfoil theory for which p’ is approximated as
d
L —
PR-pg (19)
which is exactly the contribution from the surface source terms in equation (15). Therefore, neglecting

the volume terms is justified by the same assumptions used in thin airfoil theory, and conversely, the
voluine source should not be neglected if the pressure field near a thick body is desired.
sircular Cylinder with a te

As a final example, consider a circular cylinder moving past a vortex in the viscinity of the cylinder.
In this ease the complex velocity potential can be found using the Milne-Thompson circle theorem to
be the swn of the velocity potential of the eylinder alone, a vortex of equal strength to the free vortex
at the center of the cylinder and a vortex of equal strength and opposite sense at the image point
z3 = a%/%), if 7, is the complex coordinate for the image vortex. The complex velocity potential for
the problem is

Val #K+T)n(z) Tin(ztn) ilin(z - z)

i) = = 2w 2 2 (20)
after dropping & constant. The pressure g is then found to be
1 @ dw

P = 5ol ool - pRe(S (21)
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a) Exact potential solution for p b) Approximate solution pf == —pde/dt

Figure 3. Compnrison of p’ and — pd¢/dt for a circular cylinder moving in proximity to a free vortex, (V¥ = 1.0,
K =20, = -2.0, Vortex position (ry, %) = (2., 15 deg.} )

where g 2 ( ) v
w _ Va i(K + T i 1 ‘,r2
dt =v(- P B e )+27r (z—z])+(z—z§))

and Vj and V; are the complex velocities of the free and image vortices.

{22)

This particular problem highlights a situation where the second volume term in equation (15) must
not be neglected. Since the vorticity is concentrated at the point x;, the vorticity vector { can be
written ['¥(x — x; )k where I' is the strength of the vortex and k is the unit vector i x . The pressure
contribution due to the second term in cquation (15) may then be written '

r_ 1 f . _ Thkxulyg - (x-x)
Py = %_V. Tkxul{ly-—yi)ln|x - yldy = - Frx = x; (23)
v
1f this result is rewritten in terms of complex variables it hecomes
. ir'i
Po = —23(2— 1) (24)

which is recognized immediately in equation (22). The acoustic sclution can be thought of as that
for the circular cylinder alone, with circulation { & + I'), superimposed with the solutions for the free
and image vortices. A logical approximation to the volume source is to again neglect the 1 pu? part
of p and only include the effects of the free and image vortices as given by equation (24). Figure 3
shows just this approximation compared to the full exact solution. This type of approximation is not
obvious directly from equation (3).
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CONCLUDING REMARKS

The aim of this paper has been to gain more understanding of the importance of the quadrupole
source in the FW.H equatign. Incompressible flow about both thick and thin bodies has been con-
sidered. The circular cylinder problem has shown that the thickness and loading contribution to p' is
proportional to d¢/dt when the potential ¢ is written in a frame of reference fixed to the undisturbed
medium. The quad._tupole contribution is just -%pu’ in this frame. This result is true generally, for
inviscid, incompressible flows, if the quadrupole is reorganized in to the form of equation (13).

With the incompressible FW-H equation in the form of equation (15), the perturbation pressure
solutuion, p', may be safely approximated hy the surface source terms alone away from the body.
Near the body and especially on the body surface, as is the case for aerodynamics, the surface
sources alone in equation (15} are equivalent to thin airfoil theory. Thus the volume sources need to
be included for aerodynamic caleulations around thick bodies. It is important to distinguish between
the neglecting the guadrupole term in équation (5) and the volume source terms in equation (15)
since the vorticity needed for steady lift generation is found to he the difference between the two
assumptions. This understanding of the FW-H equatmn as applied to incompressible aerodynamics
is believed to be new.

It has also been seen in this paper, as Powell has shown previously, that the vorticity in the fluid can

he considered the acoustic pressure generation mechanism. This view identifies the source regions as

vortices, houndary layers, excess vorticity generating lift, and wakes, which are tangible features in

the flow. As in the case of the cylinder in the viscinity of a vortex, it should be possible to model

regions of vorticity in the flow separately for acoustic calculations. |
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