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1. INTRODUCTION

At low frequencies only plane waves can continuously propagate along a long section of
uniform duct, but at a discontinuity in the duct cross—section higher-order, evanescent
acoustic waves are produced. It is common to use a linear plane-wave method for the low
frequency analysis of silencer systems which are enerally composed of a series of uniform
ducts with area discontinuities at their joins. \ 'lst the plane-wave analysis is generally
acceptable, there are small but noticeable errors which are caused by the neglect of the
higher-order, evanescent modes which are local to the geometric discontinuities. The use of
non-planar analysis throughout the silencer system is vastly more complex and expensive
than planewave analysis and thus, for some considerable time, attention has been 'ven
to the problem of accounting for the effects of evanescent, non-planar waves in a bastcally
plane-wave analysis.

The technique consists of findin a relationship between the plane-wave acoustic pressure
and velocity variables at either Side of a geometric discontinuity, which incorporates the ef-
fect of the evanescent waves. Non-planar analysis is required to determine this relationship,
and it is found that the non-planar evanescent waves give rise to an effective impedance at
the discontinuity. A simple algebraic expression for the effective impedance is then obtained
from a curve or surface fit to the exact solution, such that a plane-wave analysis can then
incorporate non-planar effects without any further recourse to non-planar analysis. The
correction terms are, strictly, only valid for isolated discontinuities but, since the evanes-
cent waves decayrapidly, they can be used at each of a series of discontinuities along a
finite silencer system. '

The analysis of discontinuity impedances began with the very low fre uency analysis of
coaxial ducts of circular cross-section, firstly for a sudden area change 1-3] and then for
a bifurcated tube [4,5]. More recently the analysis for these cases has een extended up
to the maximum frequency possible, that of the cut-on frequency of the first non-planar
propagating mode, and the convective effects of mean flow have also been considered [6-9].
This paper continues the series by investigating the situation where the ducts at a sudden
area charge are not coaxial. The complete low fre uency regime is considered, but mean
flow effects are ignored since they where shown to e insignificant in the coaxial case [8].
In general, mean flow effects do make significant contribution to the overall transfer matrix
at a discontinuity. However, the term in the transfer matrix which is associated with the
effective discontinuity impedance from non-planar waves is not significantly altered by the
presence of mean flow. The results in this paper therefore find application in the analysis
of engine intake and exhaust silencers throughout the normal operating range, typically of
Mach number less then 0.3.

Proe.l.O.A. Vol 13 Part 2 (1991) 453



 

Proceedings of the Institute of Acoustics

IMPEDANCE AT A DUCT JUNCTION

2. ANALYTICAL METHOD

The analysis basically follows that of previous work [3,8,9] and similar notation is retained

in so far as possible. A geometrical discontinuity occurs at the junction of two ducts, B

and C, of circular cross-section with radii b and c respectively, (b < c). In general the ducts

B and C are non-coaxial and the axis of duct B is taken to be distance 6 from the axis of
duct C, see Figure 1. Two circular cylindrical coordinate systems are employed, (E,fi,z)

for duct B and (130,2) for duct C. The z-axis is in the direction of the duct axes, with its
origin in the plane of the discontinuity and the sense is positive along the direction of duct

C. A low frequency solution is sou t, where only the plane-wave mode can continuously

propagateedand the higher—order rno es, which are excited at the discontinuity, are rapidly
attenuat .

  
(I) (b)

Figure 1. Geomeu'y of the non-coaxial duct junction

Consider harmonic waves for frequency w in a fluid whose speed of sound is a, such that
the linearised wave equation reduces to

V“? + *2? = 0 (1)

where the wavenumber k = nylon and the acoustic pressure is pe'“. On the assumption
that the duct walls are acoustically hard, then separation of variables solutions for each of
the ducts B and C exist as follows:
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where 7;“ = [(‘Tf - 1:7]9 and 7,... = KL“): — Hr. (4),(5)
C

The terms I"... are the roots of the equations

d5 men = o (6)
the lowest non-zero value of which is no = 1.841, see [10], for instance. The requirement
that only the plane wave continuously props ates implies that 71,, and 7m. are real, see
33:8th118 (2) and (3), and hence, from equations (4) and (5), that 7:: < 1.841, since 6 < c.
T '3 gives the upper frequency limit at which the following analysis is generally valid.

Exprssions for the particle velocity, u, in each duct follow from equations (2) and (3), since

  

1 6P8 + an — -|'lvs ” ” Inn-C 1' xpanug = = Bo e — B“ e + Z ZanYBm.-7m b C°5('"fl)c "" -(7)
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11:225.“
where Y3” =1g: and yam = m and n ,4 o. (9)

It follows from equations (2), (3), (7) and (8) that the acoustic pressure and particle velocity
in each duct at the junction 2 = 0 can be written as

    

(PB)I=0 = 300 + Z ZanJm (1'1"6)cos(mfi) (10)

7.1;?

(PC):=o = Coo + 2 £20an... (1";"')cos(ms) (11)
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(Paova):=o = YBWBnu + Z [Y m anJ". (171“) cos(m/3) (12)

’11“:

(pauvc),=n amen” + Z Z)’ mom”... (’2") cos(m9) (13)
m=0 n=0
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The following conditions must be satisfied at the duct discontinuity:

(Pa).=o = (PC)I=0
("B)r=o = ("6):=o

(vC)x=0 = 0, over Sc — SB (15)
whereSB istheregionOSbe, 055<2rmd$cistheregion05rSc 059(21r.
It can be seen that, in general, for an exact solutions of the problem, an infinite number
of evanescent waves must be considered in each duct. Conversely, if only a finite set of
evanescent modes are considered, then there will be some error in the conditions given in
equations (14) and (15). Denote the error in each condition as follows:

}, over $3 (14)

E] = (Pfl)z=0 _ (PC)I=0}
. S 16

£2 = ("B)z=n - (vc):=o over a ( )
53 = (uc).=n — 0. over So - 55 (17)

One can then form the weighted residual statements

/ elm, d5 = 0 (18)SB

/ 52w, d5 + raw. d5 = 0 (19)
SB Sc-Ss

where the wI are arbitrary weighting functions. Suppose we truncate m at Ill, and n at N.
in duct B, giving M; x N; modes, and that similarly we have Mc x N: modes in duct C,
then the respective Em. and C"... coeflicients can be found by the choice of

 

wq = J," (I'VE) cos m3, 0 S 5 Mg, 0 s n 5 N5 in equation (18)

em"!-
wq=J.,.( c

Substitution of the above weighting functions into e nations (18) and (19), together withuse of Graf’s Addition Theorem for Bessel functions l[111] which, for the geometry of Figure1' .

E J". (“1”) cos m9 = E J“. (“a”) J. (“35) mop). (20)

 

)cosmO, 0 S m 5 Mg, 0 S n 5 NC in equation (19)

   

allows for integration by standard analytical means to give the following expressions:
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"mm." °°

GYYBMBOO = Yancon . (22)
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p=0tth q=0toN,, pkqaéo

I 2, p = 0
wherea=b/candK,={

4, p > 0

3. DISCONTINUITY IMPEDANCE

A transfer matrix relationship is sought between the plane-wave acousticpressure and vol-
ume velocity in the two ducts at the discontinuity. It follows from equations (l0)- 13) that
the plane-wave pressures are p3, = Boo and pa = CM and that the correspon ing vol-
ume velocities are V5, = SBYBWBM pan and ticn = ScYc,,Coo/pao for ducts B and C
respectively. Hence, from equations ( 1) and (22), one can write

[Pm] = [I 2] [Pal ‘2” ‘Va, 0 1 Von

Mg Ne

   

' _ 2pao. Cmn 1mn6 Jl(Tmna) 9

“he” Z — Sc "and: YcuCW Jm ( c ) z"In" ' (-6)
mkn¢|l

the efi'ective discontinuity impedance. It transpires that Z is always imaginary, a reactanoe,
and it is usual to write

2 = in. (27)
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3.1 Plane-Piston In ut
The derivation of t e reactance is particularly simple if one assumes that only the plane-
wave is present in duct 3, i.e, B" = 0 unless p = q = 0. It then follows from equations
(5), (9), (22), (24), (26) and (27) that

_ 2_p “‘ ”‘ KmJt(£':fi)J?(zma)
X ' 5a (I’m — mzmzmnzzm — <ch

3.2 Complete Modal Solutions.
Substitution for YEMEN from equation (22) and for B” from equation (23) into equation
(24) yields a linear system of) Mc + 1)(N¢ + 1) — 1] equations in a similar number of
unknowns, the coefiicients C" (choCon).' The solution of these equations must then be
substituted into equation (26) to yield the reactance, from equation (27).

4‘ RESULTS

For conformity with earlier work, results for the efi'ective reactanoe are given in terms of the
correction factor H = (Sta/8h X. The maximum off-set distance of the axes for a given
pair of ducts can be written as 6 = (6/:),,,_, = 1 —a. Figures 2 and 3 show the variation of
H with a for curves of constant p6', p = 0,0.25,0.5,0.75,1.0. In Figures 2a and 2b, results
for a glue-piston input with kc = 10" and kc = 1.5 respectively, are given. Figures 3a
and 3 show similar results for the complete analysis, with non-planar evanescent waves in
both ducts,

It can be seen that the effects of offset distance upon the correction factor are very signif-
icant. The frequency values of the plotted results are close to the limits of the frequency
ran e for propagating planar waves. Thus it can be seen that, whilst frequency effects are
neg igible for junctions that are nearly coaxial, variations with frequency do become signif-
icant as the oll'set distance increases. Finally, it can be seen that the plane-piston solution
gives a good approximation to the correct, full modal, solution, although the plane piston
results are consistently too high, A better estimate of the true results can be obtained by
simply taking 93% of the values from the plane-piston analysis. Hence the simple plane-
piston analysis can be used to obtain accurate estimates of H over a very large number of
data points, for varying ofl'set distance and frequenCy, for use either directly as a database
or in the development of empirical formulae for H.
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Figure 2. Correction factor for planapiston input from duct B. (11) kc = 0.001; (b) kE = 1.5.

(b)
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Figure 3. (list-retina factor {or full modal analysis -in ducts B and C. (a) k, = 0.00];

( c = 1.5.
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