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l. INFRODUCI'ION

The boundary element method (BEM) of analysis is. in many regards, an ideal tool for the
analysis of low frequency sound fields caused by structural vibration of the bounding walls of
cavities, such as in vehicle passenger compartments. As compared to the finite element method
(FEM). the BEM has the potential for significant time and cost reduction at the meshing stage,

where only the boundary of the cavity need be consideredfld/at the problem formulation and
solution stage. where there is a reduction in system size. The main disadvantages is the
requirement to integrate singular functions. However there is a funher problem with the use of
the BEM for interior acoustic analysis which has received little attention. Bernhard et al [1]
demonstrated that there are inaccuracies at very low frequencies. which can be reduced by the use
of very high order quadrature. Such quadrature schemes are necessary for all integrals. not just
for integrals which contain singularities. The computational effort required by the high-order
quadrature schemes is such that much of the advantage over the FEM is lost.

In this paper it is shown, by the use of the conventional BEM on a simple one-dimensional duct
problem, that the reason for this error at low frequencies is due to ill-conditioning in the system
matrix. A new BEM formulation is then given from which the first few terms of a series solution
to the low frequency problem can be generated, and in this new formulation the system matrix is
not ill-conditioned. The low frequency BEM formulation which is developed here is equally
applicable to two- and three-dimensional problems. in addition to removing the problem of ill-
conditioning. the new formulation has a further benefit in that only one matrix assembly and
solution stage is needed to cover the entire low frequency region. whereas. both of these steps
must be repeated for each frequency value using the conventional BEM formulation.

2. CONVENTIONAL BEM FORMULATION FOR 3-D PROBLEMS

Consider a volume 9. enclosed by a surface S, to be filled by anideal. homogeneous. stationary

fluid. For a low amplitude, harmonic disturbance of frequency w. the sound pressure P in the
cavity satisfies the Helmholtz equation

aft/ax2 + 81P/8Y2 + a’waz2 + kzP = o (1)
where k = m/ao is the wavenumber and a0 is the speed of sound. Application of the momentum
equation at the surface of the cavity yields the boundary condition

aP/BN = —jpo(rtVi on S. (2)

where N is the outward normal to S. pa is the mean fluid density.j = I: and V. is the normal
component of the particle velocity of the fluid.
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Green's theorem can be used to transform equations (1) and (2) into an integral equation over the
boundary 5. namely [2)

0(a) fin) + 5% J P(§)%(r—‘“(“‘)) as = ‘—j"°"’ [ _L—__Vrm“) as (3)
S Rims) 2" s alas)

where a and § refer to two points and R(u.§) is the distance from a to E. The position of a is
arbitrary, whilst é lies on S. The value of the coefficient C(a) depends upon whether at is inside,
outside. or on the boundary.

   

      
    

The boundary element solution of equations (2) and (3) begins with the discretisation of the
surface S into a finite number of elements [2]. The variation of P, V- and the geometry over each
element can be represented to various degrees of complexity, but in all cases. equation (3) can be
reduced to the matrix fortn

[A] (P) =[Bl anl (4)
where (P) and [Vi] are vectors of the surface pressure and normal velocity values at the nodes or
control points of all the elements. The coefficients of [A] and [B] are evaluated numerically and
extra care is needed when the integrals are singular. It is of particular imponance to note that the
wavenumber is embedded within the integrands of equation (3). Hence all of the coefficients of
[A] and [B] must beevaluated separately for each frequency of disturbance considered. If the
normal velocity vector {Va} is prescribed then one solves a system of or linear equations in m
unknowns to evaluate the surface values of the pressure P. The pressure at an interior position
can then be found from equation (3) with a. as the interior point. since P(§) is now known.

   

    

    
     

                   

   
  

   
 

The formulation outlined above is not suitable at very low frequencies. For instance. Suzuki et at
[3] used this formulation to determine the pressure at the centre of one end wall of a rectangular
enclosed of dimensions 0.34m x 0.08m x 0.08m, when one end wall was vibrating with uniform
velocity and all other walls were rigid. A mesh of 304 constant boundary elements was used. and
results given over a frequency range of 250 Hz to 4 kHz showed excellent agreement with the
analytical solution. However, if one uses the same mesh and formulation at low frequencies, the
BEM results are found to be in serious error below lOOHz. As mentioned previously. Bernhard
et al [1] have noticed that the error can be reduced by the use of very highorder quadrunrre at low
frequencies. However the integrals to be evaluated, given in equation (3), are functions only of
element geometry and frequency. Thus the accuracy of the integration is greatest at low
frequencies and reduces for higher frequencies, for given geometry. This implies that the
accuracy requirement must increase as the frequency decreases. which in tum suggests that the
conditioning of the equation system becomes poor at low frequencies. It is proved below. for a
simple one-dimensional formulation. that this is indeed the case.

3. CONVENTIONAL BEM FORMULATION FOR l-D PROBLEM

Consider the ease of plane-wave sound propagation in a uniform duct of length L, for which the
governing wave equation is

fl+kzp=m (5)
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The fundamental solution to equation (5) is p = sin k'r, where r = I x — xi l. xi being some chosen
observation point. Thus, following the direct formulation [2], one forms the weighted residual
expresston

I sin 1013+ k2 p) dx = o. ' (6)

L
Equation (6) is integrated twice by pansto give k [p cos id]: = sin kr]o (7)

This expression is evaluated with xi = O and xi = L in turn. to give

)5 cos kL —l [ (P)o] = - (dP/dx)o J (8)
sin ld. -1 cos kL (Pk (dP/dX)L ' _

where the suffixes 0 and L denote the x = 0 and x = L locations respectively. Given the boundary
velocity values (V00 and (V.)L. then since dp/dx = —jpoao kV., equation (8) can be written as

[A] (P) = (B) with known coefficients of [A] and (B) for a given problem. such that solution
for (P) follows. Note. however. that

1
A =—JS-—— cosZkL—t = 4:2. (9)

I I sin2 kL ( )

Thus, when k is small, | A | is very small and the equation system (9) becomes ill-conditioned.

Small errors in the determination of the coefficients of [A] will therefore lead to large errors in the

solution for (P). The same problem occurs in matrix [A] in the three-dimensional case, equation

(4)-

For boundary values of (Va)0 = U and (V-)L = 0. the exact solution ofequation (8) is

(Pb =—jcotkL. (10)

 

PoaoU

 

0 9d 0.: OJ I.‘ 9.!
man II.)

Figure 1. Pressure on the vibrating end wall of a closed duct. exact solution ;
_ 1% error in coefficients ; _ _ _ _ 0.01% error in coefficients.

Ploc.l.O.A. Vol 14 Pan 4 (1992) 953



  

euro-noise '92.

LOW FREQUWCY BEM

This is the same duct problem as considered by Suzuki et a1 [3] and the exact solution at low

frequencies is shown in Figure 1. Further curves are given in Figure l for the pressure at the

vibrating end of the duct. assuming a percentage error in the off-diagonal coefficients of matrix

[A] in equation (8) of 1% and 0.01%. A similar result occurs for the same error in the diagonal

coefficients or for absolute errors in the coefficients of 0.01 and 0.0001. Thus it is clearly

illustrated that. at low frequencies, small errors in the numerical integration lead to large errors in

results when using the conventional boundary element formulation, even for the simplest of

problems.

4. LOW FREQUENCY BEM FORMULATION FOR 1-D PROBLEM

It is more 'convenient in this case to make the dependent variable the acoustic potential

0, where 0 = P/j on a), and to non-dimensionalise all variables. Then

fl+(kLFo=o (11)
at}

where § = x/L, L being the duct length. Consider only low frequency problems such that (kL) < l

and let (kL) = e. ntrocxuee non-dimensional forms of the particle velocity and the acoustic
potential as v = V 52cc and o =¢AcoL) thus equation (11) and the associated boundary
conditions become

2
Q+ez=0 , with 9:41“. (1283’)
dgi dn

where n is the outward normal to the boundary.

Consider a series expansion of the acoustic potential of the form

¢=¢o+82¢i+84¢2+m <13)

Substitute this series expansion into equations (12) and equate temis of similar order in e. to give

.32 2 2 z
4’: = 0, d_¢21 J, m, = o, L“’12 + m =0, L“’23 + m = o <14a.b.c.d ...)

5% di dé d5

together with the associated boundary conditions 922 = 0, m = v., 991 = ...(15a.
b c ) dn dn dn

ai boundaries.

Clearly, the solution forthe is simply the = constant . (16)

An expression for the actual value of the constant the in terms only of boundary values follows

from integration of equation (Mb) over the domain. since
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[m1 +¢o[§]l =0 (17)
«1:

Hence «PHM, -("—°1)]=4(v.). +(v.)u1 =—9£‘ (18>
dfi 1 d: o (2

where Qua is the net acoustic volume velocity outflow to the duct and fl is the duct volume. The

next step is to solve the Poisson equation (14b) by the boundary element method. The

fundamental solution of Laplace’s equation. namely r = I § — g; I, is used to form the weighted

residual statement

2 I

rd—¢l—d§+¢gIrd§=0. (l9)
0 déz o

This equation is integrated twice by parts to give

1 2 l

11:. ' = 3‘12 4. ¢ _.dx.§_ (20)

d: “L diL ° 'é d5 2
and is evaluated with i; = l and {i = 0 in turn. to give

I _1 waldo] = [w +(v.)o]_ (m
—1 1 (m). w +(v.>.

Equation (20) makes it clear that this is a redundant set of equations. thus one can solve for the m

values only to within some arbitrary constant. say ‘9‘. Let

h = M + $1 . W. = 0‘ (22a.b)

men (vile = W2 + (mo . (23)

The constant 31 can be found from the integration of equation (14c) over the domain. since

do: ' 1 am '
-— +¢§ — —§d =0- (24)

[ dgL [ t 10 d: C

and therefore. using equations (14b) and (l5b).
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2 I I 2
[m iii—[%%L —¢o 5; d: = 0. _ (25)

Thus a

$1 [:15 = [fig]! - [4:4 :13 + it: <26)
dizo

and the right-hand side contains expressions on the boundary which are either known, or can be
calculated. Hence

4); =(v.)1 + (pg/6 (27)
Higher-order terms of the series can be found in a similar manner, with the simplification that the
Va terms are now zero. Thus the weighted residual ion-n of equation (14c) is integrated several
times by parts, with the use of equation (14b). to give

3 la L i _[r 6 I — 0. (28)%1_.dl_ ‘ 1-1 i]! [mfli]; lldnil-
[rdfilr [utmfm'gh [déwz o+d§d§ 3 +¢"i a: 8
This expression is evaluated with i; = l and g; = 0 in turn. to give

[-3 1‘ iii] =i13:;3;;3_':1"11£Tilfl~
Once agent. one can solve for ()2 only to within some arbitrary constant. say $2. With

$2 = ¢l2 + 1’2, and = 0. Then _

_ (tiio = (Va)l/3 — $0 /8 + W2- (30)
The constant value ozfrom the integration of equation (14d) over the domain, with the use of
equations (14b). (l4c)._(15|12 and (lie), which gives

()2 = tin/6 —(v.)1/24 — oil/120. (31)
One can evaluate further higher-order terms in a similar fashion. Note in particular that the matrix
[A] in equations (21) and (29) is identical. Thus when considering higher-order terms it is only
necessary to evaluate the right-hand sides and to manipulate the right-hand sides for equation
solutions. This is eqmtlly true. and panicularly relevant, to solutions of two- or three~dimensional
problems, although in these cases it is necessary to integrate known functions over the boundary
of the domain in order to determine the tight-hand sides.

 

(29)

Application of the above formulation to the same duct problem as considered in Section 3 gives.
from equations (13). (18). (22). (23). (27). (30) and (31)

=_ -53-: (Pb =--1-e_L3(do (u)(1 3 45+.... or poaou ta 3 45+.... (32a,b)
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Figure 2 illustrates the form of solution for an increasing number of terms of the series. It is seen

that tlte low frequencyvsolution‘ requires very few terms of the seriesexpansion. thus the solution

technique is practical. Furthermore. an errorof even 1% in the coefficients of matrix [A] now has

a negligible effect upon the solution.

It is seen from equations (10) and (32) that the analytical series solution for o in this case is in fact

afi=ecote=j§°f€j =(l—62/2!+r:‘/4!---)(1+fl+pz+ml ,|p|<1, (33)

where p=e2nt—a‘/5!+.--.

Thus i=1_£l_£i+_2_56... (34)
(—u) 3 45 94_5 .

andisconvergentfor il—flg—E|<l . or 00511::-E <2. hence e<1t.

The truncated series can only be expected to give an accurate solution for E < 1 but, since the

coefficients in equation (34) are seen to decrease quickly in magnitude, the range of accuracy is

greater than this. as seen in Figure 2.

    
o 0.4 0.! 1.2 u z 2.! LI 3.:

 

W(IL)

Figure 2. Pressure on the vibrating end wall of a closed duct of length L exact solution

; - - - - - 1 term. . . . . . . 2 terms. _ . _ 3 terms of series solution.

5. CONCLUSIONS

At very low frequencies, errors which arise front use of the conventional BEM are due to ill‘

conditioning in the system matrix. It is possible to remove the ill-conditioning problem by the use

of a series solution BEM formulation This method requires only one analysis for the entire low

frequency region and thus gives significant time saving as compared to the conventional BEM
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formulation. in addition to the gains in accuracy. This paper has concentrated on simple one-
dimensional problems in order to highlight the causes of the errors and the basis of the new
technique. both of which are unchanged for two- and three-dimensional problems [4]. when the
relevance of the method becomes apparent.
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Figure 3. Pressure at the mid-radius position of a vibrating sphere of radius a.

An example of the use of the method for a three-dimensional problem is shown in Figure 3.
which gives the solution for the vibrating sphere problem considered by Bernhard et at [1]. it is
seen that the new formulation has significant accuracy gains over the conventional formulation
even when the quadrature scheme is single-point.
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