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INTRODUGI'ION: Over the last decade, the matrix displa-
cement method, which is known to be a finite element
analogue of the Rayleigh-Ritz method, has been widely used
for vibration analysis or structural components. It is
possible to develop new and equally useful finite element
methods adapting other Imam proximate methods in the
analysis of solid continue. 1: this paper, we present
two methods, one based on the modified Rayleigh-Ritz
method following Reissner and the other based on the
dalerkin method. An assessment of these methods in can-
perison with the conventional displacementmethod is given
with the aid of simple examples.
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displacement transformation matrix
load transformation matrix

X

s
{135 l inertia loading
In I mass per unit length

V1 : displacement distribution over it"I element
:25 2 local or element degrees of freedom
{23 x global or structural degrees or freedm
F. x local coordinate in the element
to x natural frequency

THE MODIFIED RQYLEIGHJRITZ METHOD:

Eagle: For the sake of brevity and clarity we describe
the method with reference to vibrations of teens. In
this method one starts with assumed displacements over .
the structure. Assmnins sinusoidal vibration, the iner-
tie loading in the structure is the product of the square
or the frequencies, mass per unit length of the bean and
the local displacement. Minimization of a function,
defined as the ditterenoe of the strain energy correspon-
ding to the inertia leading and the kinetic energy corre-
sponding to assumed displacement distribution, provides
the procedure for approximating the natural frequencies.

Finite Element An 0 n x The principal steps in this

procedure are as follows:

      



 

(1) Divide the structure into a set or sub-dmains
celled 'elemente'.

(2) Assume a suitable displacement distribution over each
element. In the case of a beam we choosea linear
displacement distribution as

V(E1) = [5.1 1 -E1]§zl , :2} = {naming} ..(1)

(3) Derive the mass matrix of the element using the
principle that the derivative of the kinetic energy
with respect to :1 ives the inertia load in that
direction. with Eq. 1), the mass matrix is easily
seen to be

_ _ a 2 1

["1 ' 6L 2] ..<2)

(4) Total kinetic energy of the structure is

r =% m2 3ng [.5 ta: [a] £25 .43)
(5) The strain energy corresponding to the inertia loa-

ding for the assumed displacements (Bq.1) is

v =§ilziTEBIJTEr1JIbIHIzi .44)
where,

{123 . to? men [.1 \zi}
[bl] = load transformation matrix, relating {I with

assumed generalized loads in the elemen .

It may be noted here, that .U of Eq.(4), corresponds to
the strain energy associated with the deformed shape of

the structure under the inertia loading and it is expre-
ssed as in Eq.(4) for convenience.

(6) The condition that (SUI-T) = 0 gives the necessary
equations to complete the solution.

THE SEEM}! METHOD:

33313: In this method one starts with the displacement

expressed in terms of a set of displacement functions

each satisfying the boundary conditions. This expression

substituted in the governing differential equations,

yields an error function. Integrals or the error func-

tion multiplied by each component function of the assumed

expression for displacement distribution, are set to zero,

tolobiein the necessary equations for completing the

so ut on

 



 

ELILite Element “5310915: We will describe the procedure
here with reference to flexural oscillationsof uniform
beans.

(1) Divide the structure into aset or sub—domains called
'elements‘.

(2) Asetme a suitable displacement distribution in each
element. For a been the displacement distribution
ovar the element, may be taken as

v1 (Li) = [mp] {:13 ..(5)

(3) Substitute Eq.(5) into the governing differential
equation to get the error function. For freeflexural
oscillations of beams the governing equation is

V1v + A2 V = O. In this case the error function is

6161) a [Way m2: up] {21$ ‘ .46)

(4) Assuned displacement distribution ovar the entire
structure in terms of the global coordinates {2.} is
easily seen to be ‘

z = [f1(£1)] [.] {21} ..(7)

and the corresponding error function becmes

€= (ri'ttpl [a] {213 ‘ Xatrfim {elm} "(8)
so that, following the Gelerkin procedure, one gets the
final equation as

often n1+ XamTfamJ [.1 = o "(9;

where , 1

3 1T E 1"] 1 T[61.1] = o [f 1’ 6‘1 & [ou13=i[f][tJeF1( )
.. 10

We may note here that, if the rod is 0! Variable cross-

section, qu.(10) get modified. Using Bq.(9) eigen-
values and eigenvectors can be computed.

ILLUSTRATIONS: The first three natural frequencies
of a simply supported uniform been are estimated using
various methods and the errors are compared in Table l.
The relative superiority of these methods is clear
from these camper ie one .

 



Table l l Percentage Error in Eigenvalues for

QimnlLflgzflrtjd Been

   

Order of Convent 1- Finite
the matrix anal Matrix Element Finite
and No. of Displace- Method Element Number
degrees of ment based on Method of
freedom Method Modified based on Mode

Reyleigh- Gslerldn
Ritz. Method Method

   

4 0.791 0.0610 0.00005
First

8 0.0517 0.0034 0.00002

4 23.1 1.4521 0.00600
Second

8 0.791 0.0610 0.00005

4 53.74 12.0609 5.67572
Third

8 3.0 0.3668 0.00396

  

QONgLUDING RflflnKS: We have presented here, two finite
element methods, based on the modified Rayleigh-Rita
and the Galerkin methods, for the analysis of natural

vibrations of structural components. For the example

analysed these methods are found to be superior to the
conVentienal matrix displacement method for estimating

eigenvalues. It is worth exploring the possibility
of developing useful finite eleent analogues of other

pouertul approximate methods Ihioh are available for the

analysis or solid continue.

  


