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1 INTRODUCTION

The opaqueness of the ocean provides opportunities for illicit trade enterprises, acts of terrorism, and
covert military operations. Compact submarines or divers can infiltrate crucial infrastructure, such as har-
bors, to either cause destruction or transport illegal goods within the secure expanse of the ocean'-23.
The EU Horizon project, Smaug, develops an Al backed underwater surveillance system for harbours to
counter these threats* using acoustic sensors. The soundscape in a harbour environment is dominated
by man-made noise that mask the acoustic signal from desired targets. Additionally, the geometry of a
harbour due to quays and breakwaters, offers a complex environment that strongly limits the acoustic
propagation. Short sensor ranges are therefore expected, emphasizing the importance of either mobile
sensors, or a large number of sensors for reliable monitoring of the underwater domain. Resulting in a
sensor-intensive operation. Conventionally, acoustic sensors are monitored by highly trained sonar oper-
ators at a one-to-one basis. This is not economically viable for a harbour security system, so automatic
solutions that detect, classify, and flag suspicious activity is required. The introduction of Al solutions in
sonar operation® allows for this level of reduction in human interaction.

Here we explore the use of both conventional methods and deep learning (DL) algorithms for detecting
the presence of targets close to the sensor. The deep learning algorithm leverages convolutional neu-
ral networks (CNNs) which are particularly effective in recognizing patterns and anomalies in complex
sensory data like sonar signals. By automatically extracting features from raw data, CNNs can learn to
identify subtle acoustic signatures of different types of objects, distinguishing between benign and poten-
tially threatening targets with high accuracy®’. Furthermore Deep Neural Networks (DNNs) can improve
classification results using several extracted features from the acoustic signal®. The ShipsEAR dataset®
(available at http://atlanttic.uvigo.es/underwaternoise/) is used to demonstrate the overall method. An
augmentation technique that mix hydrophone recordings of present ships with ambient noise data to gen-
erate a rich and balanced data set for the training. In the augmentation datasets ranging from fairly clean
(target and noise only) to complex (target, noise, and interfering vessel nearby) are generated, and the
performance of the proposed algorithms are assessed for each dataset.

2 DATASET

The ShipsEar dataset® captures ship-generated noise from the Spanish Atlantic coast in Northwest Spain,
specifically in the port of Vigo area, during autumn 2012 and summer 2013. The samples are collected at
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a 52,734 Hz rate using digitalHyd SR-1 recorders. The dataset features 90 recordings with hydrophones
configured in a vertical arrangement. The dataset encompasses eleven ship categories, ranging from
fishing boats to ocean liners, along with coastal background noise. Here the farget class consists of
the recordings of motor-, pilot-, and sailboats, while the remaining ship classes are used as interfering
vessels. The recordings were split into three different groups before data augmentation. The groups
were made as balanced as possible in terms of recording minutes per class. The groups are used
as test, training, and validation datasets in the machine learning. By splitting the datasets before the
augmentation, we make sure that no single recording is both used as test and training data.

3 METHOD

3.1 Data augmentation

The data augmentation scheme mixes recordings of both target vessels and undesired, interfering vessels
as well as ambient noise. The intention is both to increase the amount of recordings, but also to increase
the complexity of the soundscape. K mixed recordings, s[n], of length N are generated from random
segments from three different random recordings; the target class, s:[n], the noise class, s,[n], and the
an interfering vessel class, s;,[n], which represents an unwanted, interfering target in the vicinity of the
target. Each segment starts at a random sample from the selected recording.

The received signal from the two vessels are modified to account for distance to the sensor. The distances
are randomly selected and are assumed constant during the 3s recording. Both thermal absorption and
geometrical loss are taken into account. The original recordings were typically made at 50 to 100 m
range®. Since thermal absorption is both range and frequency dependent'?, the modifications are made
in the frequency domain. The final mixed recording then becomes:

sln] = saln] + si[n] + S0, (1)

where 35[n] is the augmented data, s, [n] is a random noise segment, and 5;[n] and s;,[n] are the range-
compensated versions of random target and interfering vessel segments, respectively. In order to assess
the false alarm rate of the detection algorithms and to provide background noise for the conventional
detectors, we generate additional two mixed segments, s, ;[n], per target segment 5;,. These extra
segments represent recordings with no target present:

Snejln] = snjn] + 540 @)

Both the noise segments s,, ;[n] and the segments of the interfering target s;, ; are taken from the same
files as their counterparts, s, [n] and s;,,, but the randomisation ensures that there are no overlaps neither
between s,, ;[n] and their counterparts, nor between any of the J different realizations of s, ;[n].

3.2 Conventional detection

As a baseline comparison to the deep learning approach, we apply binary detection using Maximum Like-
lihood Estimation (MLE) and logistic regression, a form of the logit model. By formulating the probability
of signal presence as a function of observed signal-to-noise ratios, our approach estimates the model
parameters through MLE, providing robust detection performance. Three different conventional detectors
are applied on the data; broadband, narrowband and DEMON. The signal-to-noise ratio (SNR) output of
each detection algorithm is input to a maximum likelihood estimator (MLE).
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For both broadband and narrowband detection of a signal with an unknown shape and strength the noise
normalised energy detector (NNED) is a natural choice':

Energy in the received signal: F = Zﬁ:{:—ol |5[n]|?

Estimated noise variance : 52 = L >V 1 3[n]|2

Test statistic : A=£%
The noise variance must be estimated from portions of the data not contaminated by the signal we attempt
to detect. We use the first of the two generated segments with no target present, s,,; 1[n]. We employ the
same strategy for detection based on DEMON processing, as formulated by Trevorrow '2.

We run both the target signal, 5,[n], and the second segment with no target present s, » through the
detectors for all K segments. By applying thresholds to the test statistics we can estimate the probability
of detection from the target signals, and probability of false alarm from the segments with no target. The
performance of each detector is assessed by estimating a receiver operating characteristics (ROC) curve.

3.3 Deep learning detection

Deep neural networks (DNNs) are particularly suitable at processing feature vectors that encapsulate
essential characteristics of acoustic data, extracted through advanced signal processing techniques. Be-
fore feeding data into the network, preprocessing steps can include the extraction of linear and power
spectrum, Mel spectrograms, as well as Mel-Frequency Cepstral Coefficients (MFCCs), which succinctly
capture the textural nuances of sound in a format highly amenable to neural analysis.

In this work, a DNN with two hidden layers with 512 neurons and RelLu activation is used with a final
one neuron layer and Binary Cross Entropy Loss function for the classification. We employ the ResNet
architecture, introduced by He et al. '3, specifically adapted for underwater detection of sounds emitted by
vessels. The efficacy of ResNet for this purpose lies in its robustness and efficiency in processing complex
sound representations, which are fundamental in capturing the distinctive features of underwater sounds.
Linear and Power Spectrum Spectrograms, Mel spectrograms and Mel-Frequency Cepstral Coefficients
(MFCCs) have been extracted from the 3s audios and features presented in the previous section have
been used to compare results. Some examples are shown in Figure 1. This data has been obtained as
follows. For linear spectrogram:

» Fourier Transform: The first step is to slice the continuous signal into overlapping segments and
apply a Fourier Transform (specifically, the Short-Time Fourier Transform, or STFT) to each seg-
ment:

STFT{x(t)}(m,w) = Y z(n)w(n —m)e /"

n=—oo

where z(t) is the signal, w(n) is the window function, m is the time index, and w is the frequency.
» Spectrogram Calculation: It is possible to use linear or power spectrogram. For the second it is
calculated by taking the magnitude squared of the STFT and converting to dB logarithmic scale:

S(m,w) = |STFT{x(t)}(m,w)|*

For Mel spectrograms the frequencies are converted to the mel scale, approximating the human auditory
system’s response more closely than the linear frequency scale.
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* Mel Scale Conversion: Convert the frequencies to the mel scale where f is the frequency in Hz.:
Mel(f) — 2595 log,, ( 1+ ——
10 700

« Filter Banks: Apply triangular filters, typically 20-40 filters, spaced evenly on the mel scale to the
power spectrum obtained from the STFT. Sum the energy in each filter to get the mel spectrogram.

MFCCs provide a compact representation of the mel spectrogram, making them useful features for audio
processing tasks.

» Compute Mel Spectrogram: As described above.
 Discrete Cosine Transform (DCT): Apply a DCT to the log of the mel spectra to decorrelate the
filter bank coefficients and yield a compressed representation:

Ik
5 ] fork=1,...,K

N
MFCCy, =Y log(S,) cos [k(Q”

n=1
where S,, are the mel spectral coefficients, and K is the number of cepstral coefficients to retain.
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Figure 1: From left to right: Linear Spectrogram, Power Spectrum Spectrogram, Mel spectrogram,
Mel-Frequency Cepstral Coefficients spectrograms. Example of data processing and image ex-
traction from audio files to be the input of the neural networks of one audio from Class B.

4 RESULTS

When mixing data we randomly select an interfering vessel class and range-compensate both the target
signal and the interfering vessel signal with uniformly distributed random ranges. 1000 segments are
mixed for each of five different cases. Tab. 1 lists the cases and the minimum and maximum range of
both the target and interfering vessel.

For the DNN we extracted features directly from the entire 3-second audio clip without using segmented
windows, then, a simplified and compact set of features is generated. This method involves calculating a
single feature vector that summarizes the acoustic properties of the entire audio clip. For this purpose, 13
Mel-frequency cepstral coefficients (MFCCs), 6 spectral contrast values, 12 chroma vectors, one spectral
centroid value, one spectral roll-off value, and one zero-crossing rate are extracted, resulting in a total of
34 values per audio clip. This vector of 34 features represents a global view of the spectrum and tonal
qualities of the clip, sacrificing temporal details for a more general and reduced description of the sound.
The features utilized to train the ResNet50 prediction models are generated employing a STFT window
length of 1024. In the case of linear spectrograms, the spacing between adjacent columns consists of
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Table 1: Parameters and performances of the five cases

Case1 Case2 Case3 Case4 Caseb

Parameters

Target min. range, r; 50 m 100 m 100 m 100m 100m
Target max. range, r: 50m 200 m 200 m 200m  200m
Interfering vessel min. range, N/A N/A 700 m 400m 200 m
Interfering vessel max. range, r; N/A N/A 1000m 700m 400 m
Number of interfering vessels 0 0 1 1 1

Performances (AUC)

Broadband detector 1 1 0.81 0.75 0.67
Narrowband detector 1 0.98 0.80 0.75 0.65
DEMON detector 0.84 0.79 0.75 0.72 0.65
MLE 1 0.98 0.90 0.88 0.81
ResNet50 (STFL) 0.93 0.95 0.91 0.93 0.65
ResNet50 (MEL) 0.94 0.99 0.94 0.81 0.75
ResNet50 (MFCC) 1 0.99 0.87 0.67 0.73
ResNet18 (Power Spectrum) 1 0.99 0.95 0.93 0.83

Deep Neural Network (34 features vector) 0.78 0.77 0.68 0.61 0.63

512 points and the resulting 2D feature matrix is reshaped to dimensions of 1282102. Mel spectrograms
are estimated utilizing 128 Mel bandpass filters, yielding a 2D matrix of size 1282102. The MFCCs are
computed using 40 MFCC coefficients, with the resulting 2D matrix resized to dimensions of 128264. For
the Power Spectrum Spectrogram, same parameters as with STFT were used but image was resized to
2562256 and ResNet18 was employed as classification network.

In Case 1 the data are unmodified. Segments from the unmodified original target and ambient noise
recordings are used. In Case 2 the target segments are range-compensated, while the noise recordings
are unmodified. In cases 3 to 5 the target segments are range-compensated and a range-compensated
interfering vessel segment is added to both the target segment and the noise segment. Receiver operat-
ing characteristic curves and the distributions of the test statistics for each detector are shown in Fig. 2.
The resulting ROC curve for the MLE and DL algorithms were also included. The MLE detector was fed
with the test statistics of all three conventional detectors as well as the frequency of the strongest peak
in the DEMON and narrowband processing. The DL detectors were fed the full segments as detailed in
section 3.3. The machine learning algorithms were trained on a training dataset containing 1000 realiza-
tions of targets and non-targets. The ROC curves shown are determined from a test dataset containing
1000 independent realizations. The original recorded files were separated to ensure that segments of
data from a single recording is not used in both the test and training dataset. Tab. 2 shows the AUC for
each combination of training (rows) and test (columns) dataset for the MLE, ResNet50 using the linear
spectrogram and ResNet18 with power spectrogram. Result of ROC curves are collected in Fig. 2

5 DISCUSSION

The broadband and narrowband detectors have comparable performance. For cases 1 and 2, the target
is consistently detected. When an interfering vessel is introduced (cases 3 to 5) the performance quickly
falls off for decreasing distances to the interfering target. This is partly because the interfering target
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Table 2: Area under curve for the ROC curve with MLE detector, ResNet50/Linear and
ResNet18/power spectrum for case 5.

MLE ResNet50/Linear ResNet18/Power Spectrum

Group1 Group2 Group3 Group1 Group2 Group3 Group1 Group2 Group3

Group 1 N/A 0.58 0.81 N/A 0.66 0.65 N/A 0.71 0.73
Group 2 0.79 N/A 0.71 0.91 N/A 0.89 0.94 N/A 0.9
Group 3 0.84 0.58 N/A 0.52 0.58 N/A 0.66 0.68 N/A

increases the background estimate used in the NNED. As can be seen by the general reduction of the
test statistics for the target class. But also because the interfering vessel may raise the noise levels in the
non-target class, as observed from the increased width of the non-tfarget distributions. The performance
of the DEMON detector is significantly worse than the broadband and narrowband detectors. However,
its performance is less influenced by the introduction of the interfering target.

The MLE detector combines the information, including the frequencies of the frequency peaks in the
DEMON and narrowband processing. The combination of several detectors significantly improves the
performance for the cases with an interfering target. However, the MLE detector is sensitive to what
groups are used for test and training, see Table 2. When group 2 is used as a test group, the performance
of the MLE detector falls significantly. This is possibly related to the drop in performance of the DEMON
detector (AUC slightly above 0.5). Closer examination shows that the DEMON signatures of the targets
allocated to group 2 were less pronounced than the recordings allocated to groups 1 and 3. This is a
consequence of the relatively low number of different recordings in each group.

Models trained using ResNet50, especially those utilizing a linear spectrogram as a feature, exhibit similar
performance to MLE, at least in the first four cases. It should be noted that the performance of CNN
models also depend on the characteristics of both the test and, in particular, training sets. As shown in
Table 2, significant variations in performance are evident depending on the test and training set employed,
especially notable are the results achieved when test is performed using the group 2. Similar to MLE, this
approach would be better suited for a bigger, more diverse dataset.

Ultimately, the dataset was trained using a ResNet18 architecture, however, employing logarithmic-scale
power spectrograms and a DNN configured with 34 distinct features derived through various extraction
techniques. In this scenario, the DNN utilizing the proposed feature set fails to deliver optimal perfor-
mance when additional noise is introduced into the signal. This limitation is evident from the type of
analysis conducted, which does not account for the temporal dependencies of the analyzed audio seg-
ments. Regarding the ResNet18-based detector, it consistently demonstrates superior results across all
evaluated scenarios. This outcome is primarily due to the employed representation, as the power spectro-
gram adeptly captures variations across different frequencies, highlighting the most significant ones and
thereby facilitating the learning process. Despite this, it is observed that as the signal degradation inten-
sifies, the detection accuracy begins to plummet significantly. This decline is attributed to the network’s
lack of mechanisms for finer feature extraction that could enable more accurate classification.

6 CONCLUSION

Different target detection schemes employing both conventional signal processing techniques and ma-
chine learning have been demonstrated for an augmented version of the ShipsEar® dataset. The pre-

Vol.46, Pt.1 2024



Proceedings of the Institute of Acoustics

sented augmentation technique allowed the generation of more complex soundscape containing both the
desired target and interfering noise from undesired targets. The detection schemes were evaluated for
different cases of increasing complexity. The conventional algorithms were capable of reliable detection
of the target in the less complex cases, but exhibited high false alarm rates in the presence of interfering
vessels. The machine learning alternatives outperform the conventional algorithms. It can be argued that
DNN detector necessitates a more thorough preliminary analysis to determine which features are most
critical and to possibly incorporate some form of noise filtering or reduction. Consequently, it is evident
that deep networks with more complex architectures can more effectively address this issue, particularly
considering the presence of noise in the signal. Hence, deep convolutional network architectures rep-
resent a robust choice for detectors in these scenarios when working with spectrograms, yet the noise
within the signal must be properly managed to enhance the overall outcomes.
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Figure 2: Each column of plots relates to the different cases 1 to 5 (from left to right). The top
row shows the ROC curves for each detector. The three lower rows show the distributions for
the test statistics of each conventional detector for both target realizations (blue) and non-target
realizations (red). In all the plots date from group 3 are used as the test dataset. The ML detectors
were trained using data from group 1.
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