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1. INTRODUCTION

This paper shows how a nan-stationary vector: predictor can be used to identify redundancy in
various common forms of speech data. A number of different forms of data are used: some
producing spectrogram-like representations. while others are rarely displayed mhimlly in the
literature, and so many researchers are not familiar with the structure they exhibit (or the fact that
they exhibit any significant structure at all).

The method used here is known as flow-based prediction (FBF) [i]. The prediction takes the farm

of a standard vector linear predictor [2], but with a sparse, fimevat'ying. prediction matrix, which

is updated over a very short time scale. This makes it eminently suitable for modelling speech
dynamics, since large changes in, for example, formant trajectories, can occur over a very small
number of analysis frames.

FBP, like the acoustic flow of Moore et a}. [3], uses dynamic programming to estimate the most

likely links between the elements of one observation vector and those of the next. However, FBP

extends the acoustic flow concept to provide simultaneous estimates of the coefficient matrix and
the innovation vector of a first-order vector linear predictor. These prediction paramters allow for

positional shifts and merging of the feamres within the data vectors.

2. SPEECH DYNAMICS

The main articulators involved in speech production are not able to move abruptly. Speech signals
can therefore be considered piccewise-confinuous. except, for example, during plosives (where the

signal statistics change rapidly). Plosive sounds have ashort duraaon and the only other abrupt

changes (from one continuous segment to the next) occur as a result of changes in voicing or
nasalisation. Thus most of the speech signal evolves smoothly with respect to time.

This behaviour has previously been allowed for merely by temporal over-sampling, so that

consecutive frames with smoothly-evolving characteristics can be identified as such by their small
inter-frame Euclidean distances. In speech recognition, this approach is often implemented by the

calculation ofdclta coefficients [4]. Thus, at presentI speech recognition and coding systems do not
fully account for speech dynamics. requiring significant temporal oversampling and even then.

attributing undue importance to many insignificant pans of the signal.
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The method described here, flow-based prediction (FBP). lowers the level of redundancy in speech
data by tracking the teams within the observation vectors and Fedicfing their flow. FBP is
computationally efficient anti adapts vu-y quit:ka to changes.
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Figure 2: Specgraphic acoustic flc of
the segment "...in greasy..."

Figure 1: Spectrum of the segment "...in
my"...

3. FLOW-BASED PREDICTION

Acoustic flow uses dynamic progmmming to align consecutive observation vect0rs to make the
evolution of the speech data manifest. The two plots in Figures 1 and 2 Show a small segment of
continuous speech. Figure 1 is the spectrogram of that utterlnce, whiCh can be combined with the
flow data. to give the specnograph‘tc ncoustie flow in Figure 2. Here. the darkness of each line
illustrates the value ofthe observation vectors. end the lines themselves indicate the optimal linh
between oneframe and the next. From these graphs it is apparent that, where the formants are
changing smoothly. the flow has mm that movement

Flow-based prediction assumes that the change from one vector to the next can be modelled by
averaging and shifting within a vector, together with a monthly changing innovation. The process
can be repnesented as non-stationary vector linear prediction:

oIH‘I = Chou + vn

However. there are two factors that differentiate it from conventional vector linear prediction.
Firstly, the prediction matrix is automatically updated over a very short time scale, directly from the
observation vectors. so us to truck the feanm in the data more nocurutely. Secondly, the
innovation vector is assumed to evolve steadily. following the lines of flow. The only exception to
this is when run abrupt change occurs. when the innnvntinn is assumed unpredictable, and estimated
as zero.
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(a) Maximum entropy method power spectrum

   

(h) Maximumelrhood method wer spectrum

(c) Linear prediction coefficients

  

   (d) Log vocal tract area

Figure 3: Typical representations of the sentence "She had your dark suit in greasy wash water all

year." spoken by an adult male.

4. SPEECH REPRESENTATIONS

There are many methods for analysing speech, each of which yields a different representation of the

speech signal [5]. Even estimating the power spectrum of speech can give rise to a perplexing

multitude of alternative algorithms, each with its own assumptions and peculiarities. For the
purposes of this paper, the methods described below have beenconsidered. Most of these are

described in more detail in [6]. Wherever possible. the parameters of each analysis have been

chosen to be comparable with each other. The details are given in the Appendix. Typical

representations can be seen in Figure 3.

4.1 Periodogmm
Th'E is the most common method for visualising speech signals It is formed by taking the discrete

Fourier transform mm of a windowed segment of speech, and finding the modulus squared of

each complex output value. It provides an estimate of the power spectral density (PSD) which is

degraded by the spectral effects of temporal windowing. The frequency resolution of the

periodoan is inversely proportional to the length of the input frame (for a given window shape),

and cannot be controlled independently. except by changing the window. The choice of window is
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restricted by the expected dynamic range of the elements in each PSD estimate, and the required

degree of temporal continuity. To give temporal continuity with adult male speech. this method can

otrly give a narrow-band spectrogram, clearly resolving pitch harmonics, and making this

representation unsuitable for simple HMM recognition.

4.2 Blockman—Tultey power spectrum

One method for controlling the resolution of a periodogram is to window an estimate of the

autocortelation function, rather than the data imelf. This allows the frequency resolution to be

reduced without losing temporal continuity. However, the window must have a non-negative

Fourier transform for negative PSD estimates to be avoided. This method can give a broad-band

spectrogram. characterising formant structure rather than pitch. Because of the limited frequency

resolution. however, very closely-spaced formants are not always clearly resolved.

4.3 Mrudmum entropy power spectrum

The power spectrum of an autoregressive (AR) process can be obtained by calculating the

parameters of the AR model from the autocorrelarion function of the signal. This has been done

here by Burg‘s method [6]. The maximum entropy method (MEM) PSI) estimate is then obtained

by multiplying the innovation power by the transfer function of the implied recursive filter. Since

speech cannot always be approximated as an AR process (e.g. when corrupted by additive noise or

reverberation, or during nasalised speech). the resulting PSD estimate can occasionally exhibit false

peaks. Nonetheless, high quality speech recordings exhibit very clear formant n-acks, and the

resulting PSD estimate is visually very similar to that of a periodogtam, but without any evidence

of pitch harmonics.

4.4 Maximum likelihood power spectrum

This is variously referred to as the na‘nimum variance PSD estimate, the maximum likelihood

method (MLM) or Cspon's method. It involves the design of an FIR filter for each frequency

where an estimate of the P51) is required. These filters have unity gain at the design fi‘equency, but

with minimal overall output power. Thus the technique attempts to attenuate all but the frequency

component of interest, and can be considered as a data-adaptive DPT. The power from each filter

is calculated from the autocorrclation function of the signal, without explicitly implementing the

filters. using the method described in [7].

The order of the filters determines the maximum number of frequency components which can be

attenuated. and is chosen according to the application. To resolve {on-nan! structure while

suppressing pitch information. the filter order should be chosen to be slightly more than twice the

maximum number of formants. as in linear prediction analysis.

The frequency resolution is damdependent, but generally intermediate between that of the

maximum entropy and periodon methods.

4.5 Cepatrum

Since speech can be considered as the product of a source spectrum and a vocal tract transfer

function, pitch information can he separated from formant structure by homomorphic filtering. A
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log-power periodogram is formed and then inverse-Fourier transformed to give a cepstrum
containing formant data in its lower coefficients. with pitch being apparent at the higher end.

4.6 Linear prediction (LP) coefficients
Autoregressive modelling of speech signals can give a very concise description of the vocal tract
transfer function. The results of this analysis are often presented as the coefficients of a ladder filter
which can be used to predict one step ahead of the speech waveform. They generally exhibit a
smooth. predictable structure during fiicativcs, but only their envelope consistently changes
smoothly during voiced speech.

4.7 Reflection coefflclents
Burg's method for calculating linem' prediction coefficients is based on the calculation of reflection
ooefiicients, which can be viewed as the parameters of an accustic~pipe model of speech
production [3]. These always have values between -1 and 1, so have lower dynamic range than
standard linear prediction (ladder) coefficients, although many of their other properties are
somewhat

4.8 Vocal tract area functions
The shape of the acoustic pipe implied by a set of reflection coefficients can be calculated by
adding successive log area ratios [8]. This gives a set of parameters which are loosely related to the
cross-sectional area of the vocal tract, and therefore obey rifles of motion similar to those of the
real vocal tract. For example, as the tongue moves a constriction forward and backward, the vocal
tract area function's values will move within the data vector. while the opening and closing of the
mouth will affect the magnitude of the values at the respective end of that vector. However, there
is an extremely abrupt change in their values between voiced and unvoiced speech. Such changes
are difficult to predict and invariably give large prediction errors (at least for a short time).

5. RESULTS

Flow-based prediction was applied to one of the TIMI’I‘ files originally used as a standard test
utterance in [5], taken from /‘ DRE/MEWMOISM .WAV. "She had your dark suit in greasy wash
water all year", spoken by aman from a Southern USA dialect region. The FBP algorithm was then
compared with a zero—order predictor (which gives errors equal to the delta coefficients). The error
magnitudes were calculated during steadily evolving segments of the utterance. Table 1 shows the
FBP's degree ofimproved performance.

From Table 1 it is apparent that the speech representations which are most amenable to flow-based
prediction (maximum likelihood, maximum entropy and Blaclonan-‘I‘ttkcy methods) are those PSD
estimates which are tuned to resolve formant structure and suppress pitch (Figures 3(a) and 3(b)).
The behaviour of the FBP algorithm1 when predicting a diphthong, is shown in more detail in
Figure 4. This demonstrates the FBP's ability to remove more of the redundancy from the data than
the zero-order predictor implicit in delta coefficient calculation, since the error magnitudes are
smaller and exhibit less structure in the case of FBP.
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Vocal tractateaftrnctionsatealso better

modelled by FBP. because of their
relationship to the positions of the

articulators within the vocal tract.

However. the advantage is only slight.

because the longimdinal motion of those
srticulators only covers a limiwd range (see
Figure 3(d)).  

Table 1: Comparison of zero—order and flow-based

prediction errors.

These methods which yield parameters directly related to

impulse responselike functions (linear prediction and

- - . reflection coefficients) only produce data with an

F 4.13:1“ coca—mt u and appropriate structure during fi-icatives (see Figure 3(a).

Fggnm (lower) mgniméefi; for for example), which constitute only-a part of most

the mph”: tuna“). utterances Elsewhere. the most Significant correlation

between elements of consecutive vemors is between

identical elements: there is little migration of features between elements, so the acoustic flow is

rarely of any use. However, the information they contain must still be predictable, since they can be

trunsforrmd into a suitable PSD form. All that these negative results show is that the evolution of

the speech signal is some difficult to model in these domains.

In the case of the cepstrum. FBP gave no measurable advantage over a merrier predictor. but in

this case. the problem is sttribumble to the scoring method used. which took no account of the

variance of elements within the vector. In the case of the cepstr'um. the first coefficient

has much greater variance than any of the others. so the error scores are heavily binssed towards

that coefficient.

The narrow—bond periodogram is inherently irmppropriste to the model assumed in flow-based

prediction. since the pitch harmonics move independently of the for-moms. This means that a me

complicated model of combined pitch and formant evolution is required

   

6. CONCLUSIONS

Flow—based prediction yields an accurate model of speech dynamics, provided the data changes

smoothly. In this context. broad—bond PSD estimates are therefore the most powerful
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representation for characterising smooth changes in speech. However, the current FBP ntodel can
only cope with one aspect of signal evolution at a time (pitch or formants. but not both). so data
such as narrow-hand pcriodograms is not appropriate.

When used on a suitable form of data, the FR? error has lower redundancy than delta ooet‘ficierm
(rem-order prediction error) and can be calculated at a reduced computational cost, and with
fewer prior observation vectors. than full first-order vector linear predictor parameters.

7. FUTURE WORK

There is considerable scope for further work on FBP. One area would be the development of a
combined model for simultaneous evolution of pitch and formant structure. Another would involve
development of evolutionary models for non PSD-Iilne speech representations (such as LP
coefficients). One approach to this might involve calculating acoustic flow in a domain where
FBP's assumption of "steady evolution" Lt valid. and then converting the prediction into a difierent
domain (MEM. MLM, reflection coefficients. vocal tract areas and LP representations are all
calculated from the same Burg algorithm and are inter-related).

8. APPENDIX: IMPLEMENTATION ISSUES

8.1 Input data
The data used here was taken from the TIMIT database. which was sampled at 16 kHz. The speech
was pie-emphasised. giving roughly 6dB per octave gain above 500 Hz, prior to each analysis.

All the analysis methods usad here are frame-based techniques, but the way the data is ueated
affects the temporal continuity of the resulting speech representations. For those analyses which
analyse the data directly. each frame has been chosen to include at least two pitch pulses. and so
the duration has been set to 25 However, those which initially window the data. have
used a 50 millisecond minimum 4-sample Blackman-Hanis window [9]. In either case a frame rate
of 80 per second was chosen. This gives roughly 50% overlap correlation between successive data
windows in both cases

8.2 AR models
Much of the data presented in this paper was calculated by aucoregressive (AR) modelling. In all
cases. the order was set to 16, and Burg's method was used to estimate the AR parameters.

8.3 logarithms
Power spectrum estimates are normally encoded on a log scale. In this paper. this scale is
approximated by a function with butmore well-behaved, numerical properties. The same
function is used to encode the vocal tract area functions. and in the intermediate calculations for
the cepstrum.

In practice, log scales can cause problems when numbers become very small. and are totally
impractical if numbers can become negative (due to rounding errors. etc). To avoid this. it is usual
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to set a lowertlneshold on the data values. before the log is taken. This, however, usumes that the
range of values is known a priori. To avoid having to estimate the respective ranges, a log scale can
beapproximatedbytakingtheN‘hrootofthedutavalue:

tn(x)-N('¥E-1) ;v N>>l, x-l

HmNisaconsmntdefiningmemgewuwhichfliisiwmulakvaEdWehrgerNisrhewider
therange on eitherside of x=l. forwhich the approximation holds. Furthermore,if N ischosen to
beapositive,oddinteger.thisequationwfllhemonntonicandcalmlahle for anyrealvalue ()th
applications where scalingandofiseton theremltingvalues is not important. it has useful‘
propmiesrelatedtoamplimde—independenoeJnthedatapresentedhere,avalueofNashasheen
used, giving an efi'ective dynamic range of 200:1 regardless of the mean level of the data.
Interestingly. this value is similarto that used in many auditory models.

8.4 Autooorrelatlon functions
The autocorrelation function for the Blaclrman-Tukey PSD estimate was estimated from the
inverse discrete Fourier transfmn of a periodogram. and windowed with the autoconelation
ftmction of a minimum 4-sample Blackman-Harris window. This in itself is a WWII
function. nonnegative for all time and at all frequencies It therefore provides a valid PSD estimate. -
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