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Abstraer.

A great number of preasure-time curves measured in shock waves
arising from undervater explosions show the existence of a well-
defined pressure “shadow and lizht region”, bounded by a strong
pressure gradient between the two regions, at the diffraction of
the shock waves by a semi-infinite plane situated in the entrance
from a channel into a water~filled tank. Through the modification
of a mechod for direct solurion of the diffraction problens by
pressure waves in air, introduced by Friedlander, it has turned out
to be possible to extend the method also to comprise the calcula-
tion of the pressure variation in the wave systen arisen by dif-
fraction of weak underwater shocks. A Rpood accerdance between the
theoretical and the experimental values have beeh stated.

Introduction.

during the last 70 years an increasing number of papers treating
the diffraction of a pulse by wedges and helf-planes have been
published. Sommerfeld's [1] exact solution to diffraction of a
simple harmonic wave train by a straight-edged semi-infinite
screen obtained by his application of the method of images on a
Riemann surface, was 1%l extended by himself [2] to cover the
diffraction of a rectangular pulse. -

The pulse diffraction problem was later rreated by Lamb [3], who
cane to a solution on a form different from the one of Sommerfeld.
As shown by Friedlander [4] the two forms can be brought in ac-
cordance with each other by a transformation. A" bibliegraphy of
some of the most essential wqus on the diffraction of sound pul-
ses can be found in [5] cogether with a thorough exposition of the
theory of diffraction.

In an early stage of the development it was obvious that even if
the case of pulse diffraction and the case of diffraction of infi-
nite trains of simple harmonic waves are analogous, they differ in

several respects. The different nature of the physical phencmena
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.in the two cases for instance causes different types of equations
governing their propagation,

Early actempts by application of Fourier transforms to extend the
results from the diffraction of simple harmoniec waves to cover the
diffracrion of pulses had demonstrated the inaccuracy of the ob=
tained resuits. This further emphasized the necessity of a direct
selution to the pulse diffraction problems, but very few genaral
or approximate methods are available, the approximate methods only
apply to limited frequency ranges. Such a peneral method, ziving

a direct solution to the problem of diffraction of a sound pulse
“of arbitrary shape by a semi-infinite plame, can be found in {4].
Another aspect of the pulse diffraction problem includes the dif-
fraction of shock waves by corners and seni-infinite planes. In
this connection literature shows gases to be the medium preferred
for the investipatioas wiile shock waves in water have not yet
been treated in connection to diffraction of pulses.

M. J. Lighthill ﬁﬂ , [71. linearised the two-dimensional problem
of diffraction of blast waves of arbitrary strength by a small-
angle corner. Diffraction of shock waves im air by corners of an
arbitrary angle was investigated by G. L, thicham [8}, who used

an approximate theory in wiiich the disturbances to the flow are
trecated as a wave propacacion on fhe shocks. The work can be con-
sidered as a generalisation to shock waves of the theory of geo-
metrical acoustics, which for weak shocks leads to some discrepan-
cy because the approximate theory concentrates the chanre in lach-
nunber over a relatively small part of the shoek.

A review of some recent works on shock wave diffraction over com-—
pression and expansion corners in pases is given by R. R. Yevnants
[9]. tonethet with a comparison of results from a number of shock
tube experiments.

In the present work am attempt is made to modifv and to extend the
theory of diffraction of sound pulses put up in [&] to cover the

diffraction of weak shock waves in water by a semi-infinite plane.

A direct solution to the diffraction problem.

Let us consider the diffraction of a plane pressure pulse with a
small amplitude incident upon a seni-infinite plane, see figure I.
The pulse front assumes parallel to the semi-infinite plane, which
is supposed to be completely reflecting.

Choosing a coordinate system (see figpure 1) with the z-axis along
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3
the edge of the semi-infinite plame, which occupies the lower (po-

jLi:ivu z) part of the x-z-plane, the plane diffraction problem will

depend on the variables x, y and t.

’By the calculation it will be appropriate to introduce parabolic

coordinates.
x + iy = (£ + in)z. whete n : ] (1)

by which

X = Ez - n2 and y = 2&n

aereby the x-y-ptane is- eransfarmed into the_ ypper half of the
£-n-plane, while the pOSItLve part of the x-axis (the trace of the
semi-infinite plane ln the x—y-plane) trsnsfnrms into the whole
E-axis. -
1s the ex:atence of a veloct:y potential § assumed. it satlsfxes
the wave equaEnon o
.3..2;‘_+2.i.,.1_‘.3.2°_ (2)
axz ay2 c2 a:z
where c¢ is the sound velocity.

The boundary condition at the semi-infinite plane must be:

—:?;no for (x | 0, y = 0) or% =0 for (n= 0) <{3)

. The velocity potential for the incident plane wave (pulse) at

!figure 1 can by means of {1} and (2) generally be written:

¢ = Flcr + y) = F(er + 2En) = F(z) (4)

where F(z} = 0 for z < 0

A solution for (2) which at the same time satisfies the boundary

conditions by the semi-infinite plane and at infinity is given
in [9] :
&+n
¢ = §F(ct + 2En) + {F(et - 2En) + {f(ect + 2En - cz)d +
o
£=n
+ (f{ct ~ 2&n -cz)d;
0

(5)

The function f( ) will be determined later.
x + == leads to¢ = Flct + 2En) (6)

the semi-infinite plane not having any influence on- the wave far
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from the edge of the plane.

By (1}, (5) and (6) give for x + - =

iF{ce + 2en) - J:(ct + 260 - ¢2dg =
0

M

{F{et - 2En) ~ F(ct - 26n - Cz)dc
0]

While (7) must. be sagisfied for. n + = together with t = O and

E =0, f must satisfy the integral equation:

iF(z) - - [fcé - czidc a 0 (8)
o

The introduction of the subsritution:

=du

z = ° = uw and df = —— . {9)
2/z - u
in (8) leads to:
z
fi{u) du . F{2) . (1o}
z - u
il
Further, if lim F(z) = 0 (11)
z—.—w

is assumed, the functlon £{ ) according to [lu] can be found of
(lo) as:

1| F' (z)dz
flu) = |—2EICF
n| fu -z (12)

As the incident pulse in according to (4) is assumed to have a de-

finite wave Eront, (lo) and (12) can be written as:

flu)du

F(z} =

I-"V(z)dz‘ (12a)

(loa) and f(u)-%

Yz = u ,r—-—u_z
o]




' lntegration by parts of (12a) leads to:

443
f(u) = % [ZJ; F'(0) + 2 |¥u = z'F"(z)dz]
a

ftuﬁ which:
u
£ () = E@ , 1 F''(z)dz
nfu " u -z
4]

As the pressure is the parameter which easiest can be measured by
a shock wave from an underwater explosion, the pressure variation
by dlffrac:lou arounﬂ the semi~infinite plane will especially be
enphasized in the folleowing.

by the velbcity poténtial ¢ the pressure {excess pressure over

hydrostatie) cai bé found from:

(15)

where p is the fluid Jensaity.

"With reference to the eguation (5), (15) leads to:

&+n
p = pc [;F'(ct + 26n) + |F'(et = 26n) + |£'(ct + 2&n - gzjdc +
a

£~ (16)

£'(cc - 280 - cz)dc]
0

Introducing the substictution:

wWu) = pcf'(u) and po(z) = ch}(z) (17)

whete p _{z) is the pressure function in the incident pulse, (14)
-]

and {16) can be written:

0 L
ﬂ/L-l n ‘u = z

[}

wlu) =




*n’
p = dp (et + 26n) + dp (et - 26n) ¢ [u(er + 200 - ¢)dg 4

o (16a)

-n
s Juter - 2en = ¢2)dg
]

The equacions (l4a) and (l6a) determine the pressure function in
the wave system arising from the diffraction of the incident plane
pulse by the reflecting semi-infinite plane. On basis of the know-
ledge of the pressura func:ian‘po(;J.andkchewdariiative p;(zJ in
the incident pulse, the function w(u) leading te p can be deter-
mined.

By means of (loa) and (17)

pn(z) - wWu)du {18}
Yz - u
G
¢can be found.
eturning to the original x-y-coordinate system the pressure fun-
ction p in the three regions piven on figure 1, by means of (18)

can be written:
Py = plet y) +p et ~y) ~ 1, -1,
Py = pylet * ¥} - 1)+ 1, {19)

P3 = 11 +* 12

where:

(et + ! (e - pi
I, = g{ct + vy - Cz)dﬁ and 12 = ylee -y - cz)dc
((xzﬂrz)i* y)5 ((xzd-yz)‘- y)!

By a suitably chosen substitution the integrals I1 and 12 can be

written;
[ (!2* 32)5 t - (:2+ yz)l
L=} MuXd bnd 1, =} ¢(u)du (20)
Vet +y - u et -y - u
Q 4]

With reference to a numerical treatment of the expressions found
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for the pressure variation the following substitutions are intro-
duced:

K, - 2 + yz)i tY. Xy ol » yz)! =¥
(21)
T wee~- (:2 * yz)!.

By use of {14a}, (20) and (21) the following expression can he
found:

ﬁ_ p (z) dz

P(X,T) p.- ] .
(T+ X =2y (T -“ij* ’ ’ )

€0

The pressure varigeicvi in the Liree regions on figure 1 can now be

obtained from.(19).48:
by = P{EE +T5 wpyfee - 3) - 4[PGRLT) P,
By = pler ¢+ y) - ![P(xl.'r) - P(XZ.T)] (23)
Py " ;[P(xl.r) + P(xz,T):]

The theory of diffraction applied to the shock wave from an under—
water explosion.

A5 shown in [11] the pressure variation as a funetion of time and
space behind the front of a shock wave from an underwater explo-

gion can be wrictten:

-t .
p (') = p € = for z' 20 {24)
and
po(z') =0 for z' <0
yhere

. . +
z' : the dimensionless substitution = S22X
cf

& : time constant in the exponential pressure decay
behind the shock fromt.

Ppo ¢ peak pressure in the incident shock wave.

An introduction of the dimensionless pressure variation po(z)lpmo
in the expression (22) leada to:
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P{X,T) = —"g dz
x| (T + K -2 )T -~ z )’

I+]

which by the substitution z' = T - u’ and dz' = =2udu gives the

result:

T,
u
px,T) = 2K 7T | Le 2du
n I+u (25)
it

Together uii:h Py and Py frem (23) the expression (25) forms the
basis of the ~umerical calrulation of the pressure variation in the
"light region” (region 2°on figiré 1) ‘and the "shadow region”
{region 3 on f:.gure 1) by the diffraction of the shock wave.

As shown in [E] tﬁe pressure “Variation” in"the wave front across the
"shadow bou.n&ary (the negauve part of the y-axis) will be discon-
tinusus if the incident shock wave is given a discontinuity in the
front.

Sueh a discontinuity will be physically irrealistic, and as showm
in [11] a shock wave from an underwater explosion will be conti-
nuous in pressure variation with a finite rise-time to the peak
pressure,

Therefore the pressure variation expressed by (24) will only be
valid afrer the peak pressure obtained.

'Previnus measurements [11] and [12] have shown a rise-time at about
1 wsec. which, therefore, have formed the basis of the numerical
calculations. The curves calculated for the variatien in peak pres-
sure for the diffracted shock wave across the shadow boundary
therefore becomes continuous.
furves for the dimensionless peak preasure variation across the
shadow boundary for fixed y-values, y = =100 mm, y = -4o00 mm,

y @ =700 mm and ¥ = -loco mm respectively, with sign given in ace
cordance to figure 1, are shown on the fipures ) - &, On the fi-
gures p designates the peak pressure in the shock wave after the
diffraction.

A cgomparigson between a calculated and an experimentally found
pressure-time variation for fixed coordinates {x,y) = (50 mm, -

-loc mm) in the shadow region is shown on figure 7.




Experimental arrangement,

The measurements took place in a water tank irmediately afrer the
outled from a water-filled channel. The dimensions of the tank were
2% 2 x 2 o. The length of the channel was 5 o and its cross di-
mensions were 6oo x 700 mm. The tank side had a prolengacion of

So m into the cross section of the channel, which formed the semi-
infinite plane, see figure 2. )
The explosions took place in the channel in a distance varying from
2,5 to 4,5 m from the outled to the tank.

Detonators {Nébel D¥namibe, typ.6) with a total explosive charge
equivalent to 0,8 g TNT were used as shoek wave generators.

An excellest reproduceability by the shock waves from this ctype of
detonators has been demonstrated by previous expericents [Lﬂ .
The measurements of the pressure-cire curves by the wave systens

in the light and. ahadow region were carried out by means of turﬁgf
line transducers (marked: Lrystal Research Inc. Mass. U.5.4.) ;{;h
the dimensions 1/4" and 1/37. o
The transducers had a sufficient semsitivity in order to be di-
rectly connecced to the entrancc of an oscillescope (marked: Tek-
tronix 555), even by measurements Jeeper inside the shadow region.
The signal/noise ratic did not allow a reasurement in the shadow ’
rug?pn closer than ¥ © - loo mm from the channel outled.

By means of U-formed seccional iron a slide system was formed to
place the ctransducer in the right position. The slide systen caused
a ESEﬂ! égé;ggcy of :6.5 rm for the y-coordinactes and of 3.4 n@—
EgF sh? a-coordinates at a distance y = - looo mm.

Thg uncertainty mentioned on the Eransducer coordinates gets the
éfeatest contriburion from the deviation in the detonator coordi-
nates between each shot.

The uncercainties by the coordinate determination leads together
with the registrarion uncertainty to a relarive uncertainty of

less than 4x1 at the pressure measurements.

The assumption, that the incident sheck wave should be plane, is a
zood approximation. Inside the relacively small x-dimensions com=
pared to the greater radial distances from the deronation,which
were of interest during the experiments, the shock wave can by all
weans be considered as plane, in spite of the spherical character

of the shock waves from underwater explosions (pmn n~ R-X'L).

Modifications in the peak pressure Poo and the time constant € of
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‘the ghock wave 46 a function of the distance R from the detonation
‘were corrected for every y-position before the calculation of the
‘variation in the dimensionless pressure ratio across the shadow

bounﬂary.

The assumption ¢f small amplitudes im the incident shock wave is
satisfied with the measured peak pressures of about l4 bar (over
hydrostatic pressure), which according to [11] leads to a variatioen
in density of less than 1 per thousand of the water density in fromt
of the shock wave. The particle wvelocity in the shock front will
under this condltxnn.be below. L pex. thnusand_of :he shock velociry
or the sound velocity.

Stronger shock waves may | be expected to glve greater deviations
from the theoretxcally calculated values. the shock velocity in
this case not bexng considered as constant and the non-linear
properties of the’ Bhock will be mote prevalent. Previous measure-
ments ﬁl] have shown that peak pressures at about loo bar only
will lead to a sheck velocity which deviares less than 1Z fror che

sound velocity in the undisrurbed water in front of the sheck.

Experimental results.

The figures 3 to 6 show a comparison between the theoretically
prescribed and che experimentally found variations in the dimen-
sionless peak pressure of the waves across the shadow beundary
for different y—values.
Both the measurements and the theory confirm the geometrical
l shadow houndary as a line through the points in which che peak
pressure is the half of the peak pressure P of the undisturbed
shock wave (measured directly in the light repgion). The experi-
_mental curves are drawn from the measured dimensionless peak
pressures by the employment of the method of least squares. Further,
é the strong gradient in peak pressure in the x-direction across the
" shadew boundary is noted, which ar y = -loo mm shows a pressure
, decay at about 60% within 4o mm. The same gradients decreases
. with increasing (negative) y in order by y = —loco tm to show a
, pressure decay of 6ol across about 200 tm, The strong gradient is
among other things supposed to be due to the shock character of the
i wave, described by the short rise-time.
; The course of the theoretically found and the measured curves show
i'a good accordance in the shadow region, apart from the course at
I

j.y = - loo tm, The extremely weak signals for x > S0 om in the
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shadow region at ¥ = -loo mm prevented am accurate determisation
of ths pressure variatiom.

Further the measurements in the shadow region show a systematical
tendency, that the measured preesure values at the pame x-coordinate
should increase faster than the calcularted pressure values by in-
creesing distances in y. The agreement between the calculaced and. :
the measured values at the shadow boundary and in greater distances
frem it seems to be a reality in spite of relatrive movemeats of the
intermediate values.

No systenatic,selative movement of.the Lo curves.seems to appear
in the ligl;: region. Also here a fair agreement between theory and
experiment is obraised although the influemce of diffraction on the
incident shock wave seen fo appear further into the light regiom,
than prescribed by the theory. This might derive from non-lineari-
ties in connection to the interaction between the diffracted wave
and the shock wave, B circumstance not considered in the theory.
The calevlations and the measutements show that the rise-time of
the wave incresses with increasing x—valuea io the shadow region,
leading to a displacement of the energy-spectre towards lower fre-
quencies. Thus figure 7 shows the calculated and the measured di-
mengionless pressure-time variatiom at the position (x,y) = (50 mm,
-loo mm), where the peak pressure is not obtained wuntil about 9
usec after the wave freat.

The course of the two curves seems to underline the applicability
of the method of direct solutiom by the calculation of the dif-

fraction of weak shock waves.

Conclusion.

The theory and the weasurements have shown the existence of a
well-defined light and shadow regiom in pressure bounded by a re-
latively sharp peak pressure gradient across the geometrical
ghadow boundary. The fair agreement between the theoretically cal-
culated and the experimenrally found values in varying distances
behipd the semi-infinite plane seems to support the applicability
of the method of direct solutiom and also to extend the mathod to
comprise the diffraction of weak underwater shock waves by a semi-

infinite place.
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KOTATION.

Wave velocity ~ shock velocity » sound velocity.

Pressure function, {index: 1,2,3 refer to regions on £ig.l).
Pressure function by the incident pulse.

Peak pressure by the shock wave after diffraction.

Pesk pressure of the incident shock wave before diffractiom.
Time.

Substitution [- et = (xz + yz)ll

Substitution (= 2 - l;z

Copydinate..in the-catuaianﬂcno:dinq.g gysten figure 1.
Substitution (x + r ‘ ;

Substictution |= (: f‘_y )

Cosrainate in the cartésian a:'i;ar'aimte system figure 1.
Substitution fe (ec ¢ y)] -

o

Su\iséftut:on t gt + 7 dimgiigionless eoordinate for
¢ J shoek waves in water.

. } Coordinates in the parabolic coordinste system.

Integration variable, introduced by (5).

Time constant in the exponeantial pressure decay behind the
shock Eront.

Density of water.
Velocity potential.
Substitution function, introduced by (17).

Hunbers in parentheses () designate formulas in the text.

' Numbexs in brackets []deaignal:e references at the end of the

paper.

L))



