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Abstract .

A great number of pressure-time curves measured in shock waves
arising from underwater explosions show the existence of a well-
defined pressure "shadow and light region". bounded by a strong
pressure gradient between the two regions, at the diffraction of
the shock waves by a semi-infinite plane situated in the entrance
from a channel into a water-filled tank. Through the modification
of a method for direct solution of the diffraction problems by
pressure waves in air. introduced by Ftiedlander, it has turned out
to be possible to extend the method also to comprise the calcula-
tion of the pressure variation in the wave system arisen by dif-
fraction of weak underwater shocks. A good accordance between the
theoretical and the experimental values have bee'n stated.

Introduction.

during the last 7o years an increasing number of papers treating
the diffraction of a pulse by wedges and half-planes have been
published. Sommerfeld's [l] exact solution to diffraction of a
simple harmonic wave train by a straight-edged semi-infinite
screen obtained by his application of the method of images on a
Riemann surface. was 19ol extended by himself [2] to cover the
diffraction of a rectangular pulse.

The pulse diffraction problem was later treated by Lamb [3]. who
cane to a solution on a form different from the one of Sommerfeld.
As shown by Friedlander [A] the two forms can be brought in ac-
cordance with each other by a transformation. A‘ bibliography of
some of the most essential works on the diffraction of sound pul-
ses can be found in [5] together with a thorough exposition of the
theory of diffraction.

In an early stage of the development it was obvious that even if
the case of pulse diffraction and the case of diffraction of infi-
nite trains of simple harmonic waves are analogous.‘ they differ in
several respects. The different nature of the physical phencaaeoa
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'in the two cases for instance cause: different types of equations

governing their propagation,

Early attempts by application of Fourier transforms to extend the

results from the diffraction of simple harmonic waves to cover the

diffraction of pulses had demonstrated the inaccuracy of the ob-

tained results. This further emphasized the necessity-of a direct

solution to the pulse diffraction problems. but very few general

or approximate methods are available, the approximate methods only

apply to limited frequency ranges. Such a general method, givinp

a direct solution to the problem of diffraction of a sound pulse

of arbitrary shape by a semi-infinite plane, can be found in

Another aspect of the pulse diffraction problem includes the dif-

fraction of shock waves by corners and semi-infinite planes. ln

this connection literature shows gases to be the medium preferred
for the investigations while shock waves in water have not yet

been treated in connection to diffraction of pulses.

M. J. Lighthill [a]. [7]. linearised the two-d nensianal problem

of diffraction of blast waves of arbitrary strength by a small-

angle corner. Diffraction of shock waves in air by corners of an

[a], who used
an approximate theory in which the disturbances to the flow are

  
.‘n i

 

arbitrary angle was investigated by 6.

treated as a wave propagation on the shocks. The work can be con—

sidered as a generalisation to shock waves of the theory of poo-

netrical acoustics. which (or weak shod-.5 leads to some discrepan—

cy because the approximate theory concentrates the chanL'e in ‘lach-

number over a relatively small part of the shock.

A review of some recent works on shock wave diffraction over col:-

pression and expansion corners in cases is given by R. .".. '.-:eynants

[9]. together with a comparison of results from a number of shock

tube experiments.

in the present work an attempt is made to modify and to extend the

theory of diffraction of sound pulses put up in [A] to cover the

diffraction of weak shock waves in water by a semi—infinite plane.

A direct solution to the diffraction proble

Let us consider the diffraction of a plane pressure pulse with a

small amplitude incident upon a semi-infinite plane. sec figure 1.

The pulse front assumes parallel to the semi-infinite plane. which

is supposed to be completely reflecting.

Choosing a coordinate systen (see figure 1) with the z-axis along
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the edge of the Imi-infinile plne. which occupies the lover (po-

l-Litive 1) port of the x-I-plaae. the plane diffraction problem will

depend on the variables x. y and t.

lay the calculation it will be appropriate to introduce parabolic

coordinates.

K * iy -' (E 9 in)2. where n z O (1)

by which

x-(z-nz and yHZEn

Hereby the x-ymflane is»transinmed.in_zo the_ypp _r half of the

E-n-plane. ithile the positive part of the x-axis (the trace of the

semi-infinite plane in the x-y-plane) transforms into the whole

E-axio.

la the existence of a velocity potential ¢ assumed. it satisfies

'3: (2)

 

where c is the aound velocity.

The boundary condition at the semi-infinite plane must be:

giyuo for(x:0.y-U) 01?: -o for (n— 0) (3)

,The velocity potential for the incident plane wave (pulse) at

Efigure 1 can by means of (1) and (2) generally he written:

6 - F(ct O y) - Net * 2E?!) = F(z) (L)

where l-‘(z) - O for z ( 0

'A solution for (2) which at the same time satisfies the boundary

 

conditions by the a

.in [9]:

 

infinite plane and at infinity is given

EM

0 - §F(ct ‘ m) o me: - 2n) + rm + 2£n - :2»: o
D

E-n

o {(tt - ZEn ~L2)d(

0

(5)

the function f( ) will be determined later.

a: v - - leads to. - Net 9 2h) (6)

the uni-infinite plane not having any influence on- the wave for
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frm the eds: of the plane.

gay (1). (5) and (6) give for x v - -

"'(c: 6 Zn) - [:01 0 ZEn - 42M: '

o (7)

‘F(cl’. - Kn) ‘ F“: - 25H - l2)“

0

While (7) musr'tuhevisgtisifiied in; n nia- taxed)“ with r. - 0 and

t = 0. f must satisfy the integral equation:

mz) - [m - czidc = o (a)
0

The introduction of the substitution:

z-zzuu and dz-l— (9)
2Jz-u

in (5) leads to:

z

 

ML. 11;) (19)

Further, if 11111 Hz) = 0 (11)

2+...

is assumed. the function f( ) according to [10] can he found of

(10) as:

 

nu) n l (z)dz

n iu- z (12)

As the incident pulse in according to (L) is assumed to have ade-

finite wave front, (10) and ([2) can be written as:

f(u)du
(10.1) and £(u)-% 31%Hz) = (123)

  

 



  

lntegratien by puts of (123) lends cu:

u

((u) --"1— [2/5 r'(o) 4 2 Ju — z F"(z)dz] ‘ (13)
0

train which:

(~(u).fll . .1. (1A)
MT "
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As the pressure is the parameter which easiest can be measured by

a shock wave [ran an underwater explosion, the pressure variation

by dun-«5511 arouna. the semi-infinite plane will especially be

emphasized in the following.

By the velecity potential 6 the pressure (excess pressure over

hydrostatic},can'lbekohna from:

3}p - o _ (15)
a:

where o is the fluid density.

'l-Jith reference to the equation (5). (15) leads to:

i‘n

p . p: [unfit o 2;“) o jF'(ct - Zén) * f‘(ct v zen ~ 42):“; o

a

E‘n (16)

o f'(ct - 2£n - Lz)d€]

0

Introducing the substitution:

v(u) -= ncf'(u) and pD(z) = Del-"(2) (17)

where p°(z) is the pressure function in the incident pulse. (11.)

and (16) can be written:

u

v01) “‘fl * l w mac
nfu Ir Ju - z

0

and
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p - now + Mn) 0 lpom - 20.) o «(u o 2:» - :2)“ o'
° (15:)

U -n

o m: - zzn -. :2de
0

The equations (llna) and (lba) determine the pressure function in

the wave syatm arising from the diffraction of the incident plane

pulse by the reflecting semi-infinite plane. 0n basis of the know-

ledge of the pressure function pan.) and‘theaderihntive p;(z) in

the incident pulse. the function v(u) leading to p can be deter-

mined. ‘ I .

By means of (loa) and (17)

pan) - \KuNu (13)

 

0

can be found.

Returning to the original x—y—coordinate system the pressure fun-

ctiun p in the three regions given on figure I. by meansof (18)

can be written:

p1“ POUR + y) * Pa“! ~ y) - ll - 12

P1 = pout ‘ y) - 11 t 12 (19)

(er. 0 y)! (ct - iv)A

I a u(cl 4' y - 42M; and 12 - ¢(ct - y - L2)dl

((x2+y2)’~ y)’ ((xzvyz)‘- 3:)!
By a suitably chosen substitution the integrals l1 and 12 can be

written:

ct - (x20 yz)l l - (12‘ Y2)I

11 = I «(uMu End 12 ' i ch)“ (20)

{ct 0 y n In; - y

0 0

h'ith reference to a numerical treatment of the uprelniona fuund
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for the preuun variation the following substitutians are intro-

duced:

xl - (x2 9 72)I ' y. :2 - (:2 * y2)l - y.

(21)
T - ct - (l2 - yz)’.

By use of (16:). (10) and (21) the following expression can he

found:

- If p (2) dz
P‘X.T, F“: _ > . _

-‘ (r4. fly (I :1)! v - (22)

. 0

The pressure variyciun' in the three regions on figure 1 can now be

obtained firm;(l_a).u:

pl - notes as“. were: - y) - §[v(x1.n o Fern]

p2 - pate: o y) - 1[P(x1.'n - mp] (23)

P3 ' ![P(X‘.T) * l’()(2.'l')]

The theogz of diffraction applied to the shock wave from an under-

water explosion.

\s shown in [11] the pressure variation as a function of time and

space behind the front of a shock wave from an underwater explo-

sion can be written:

I
p°(n') - PmE-l for z' : 0 I (24)

and

p°(z') - 0 for z' < 0

\shere

z' : the diuensionless substitution -m
:9

a : time constant in the exponential pressure decay

behind the shock front.

peak pressure in the incident shock wave.
llmo

An introduction of the dimensiunlesa pressure variation p°(z)/pmo

in the expression (22) leads to:
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P(X,T)-§ '2' I

n (rox—2)(r-z)

0

which by the substitution 2' - 'l' - u2 and d:' - -2udu gives the

result:
If

llmm.) _ if 2—1 2 du

'n x v u (25)

Together with p2 and p3 from (23) the expression (25) forms the

basis of the “merical uL-unlstion of the pressure variation in the

"light region" (region Z'o‘n rigor-é 1') 'and the "shadow region"

(region 3 on figure 1) by the diffraction of the shock wsve.

As shown in; [E] the r' '

"shadow boundary‘" (the‘négative part of the y-axis) will be discon-

 

ure’ilaristioh‘ ihThe"'uave front across the

 

tinuous if the incident shock wave is given a discontinuity in the

front.

Such a discontinuity will be physically irrealistic, and as shown

in [11] a shock wave from an underwater explosion will be conti-

nuous in pressure variation with a finite rise~tine to the peak

pressure.

Therefore the pressure variation expressed by (25) will only be

valid after the peak pressure obtained.

Previous measurements [11] and [12] have shown a rise-time st about

1 usec. which. therefore, have formed the basis of the numerical

cslculstions. The curves calculated for the variation in peak pres-

sure for the diffracted shock wave across the shadow boundary

therefore becomes continuous.

Curves for the dimensionless pesk pressure variation across the

shadow boundary for fixed y-values. y - -loo m. y --looo m,

y a -7oo mm and y --looo m respectively. with sign given in nc~

tordance to figure 1. are shown on the figures 3 - 6. 0n the fi-

gures pm designates the peak pressure in the shock wave after the

diffraction .

A emporison between a calculated and an experimentally found  pressure-time variation for fixed coordinates (my) - (So my

-loo mm) in the shadow region is shown on figure 7.



BEE ntal arrangement.

The measurements took place in a water tank itmediately after the

outled from a water-filled channel. The dimensions of the tank were

2 x 2 x 2 n. The length of the channel was 5 o and its cross di-

mensions were Goo x 700 mm. The tank side had a prolongation of

So am into the cross section oi the channel. which formed the semi:

infinite plane, see figure 2. h

The explosions took place in the channel in a distance varying from

2,5 to 4.5 m from the outled to the tank.

Detonators'U-‘obel Binan'ite. typ.6) with a total explosive charge

equivalent to 0.5 g TNT were used as shac)‘ wave generators.

An excellent reproducanbility by the shock waves from this type of

detonators has been demonstrated by previous experiments [ll]. -

The measurements of the pressure-tine curves bythe wave systems

in the light and shadow region uere carried out by means of turnta-

line transducers (marked: Lrystal Research Inc. Mass. u.s..a.) um:

the dimensions UL" and 1/3'. ' '

The transducers had a sufficient sensitivity in order to be di-

rectly connected to the entrance of an oscilloscope (marked: Tek:

tronix 555). even by measurements deeper inside the shadow region.

The signal/noise ratio did not allow a measurement in the shadow 4

region closer than y = - loo from the channel outled.

By means of U-formed sectional iron a slide system was formed to

place the transducer in the right position. The slide systen caused

a total ‘ iuracy of :6.5 mm for the y—coordinates and of 33,4 can"
ll Lilla.

for the x-eoordinates at a distance y = - looo mm.

The uncertainty mentioned on the transducer coordinates gets the

{greatest contribution from the deviation in the detonator coordi-

nates between each shot.

The uncertainties by the coordinate determination leads together

with the registration uncertainty to a relative uncertainty of

less than 47. at the pressure measurements.

The assumption, that the incident shock wave should be plane, is a

good approximation. Inside the relatively small x-dimensions com-

pared to the greater radial’ distances from the detonation.uhich

were of interest during the experiments. the shock wave can by all

means he conlidered as plane, in spite of the spherical character

of the shock waves from underwater explosions (pmo w R-x'l).

Modifications in the peak pressure pm and the time constant e of
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3the shock wave as a function of the distance R from the detonation

3were corrected for every y-positian before the calculation of the

:varistion in the dimensionless pressure ratio across the shadow

: boundary.

The assumption of small amplitudes in the incident shock wave is

satisfied with the measured peak pressures of about U. bar (over

hydrostatic pressure), which according to [11] leads to a variation

in density of less than 1 per thousand of the water density in front

of the shock wave. The particle velocity in the shock front will

under this condition:_be helow_.l._ pu.zhm§nd{nf-_fllle shock velocity

orlthe sound velocity. in > ' '

Stronger shock waves__may be efpected to give greater deviations

from the theb'reti ally calculate 'va"ues, the shock velocity in

this case not being considered as constant and the non-linear

properties of the aha-ch will be more p're'viilen't'.~ Previous measure-

ments [11] have shown that peak pressures at about loo bar only

will lead to a shock velocity which deviates less than 12 iron the

sound velocity in the undisturbed water in front of the shock._

Expe ental results.

The figures 3 to 6 show a comparison between the theoretically

prescribed and the experimentally found variations in the dimen—

sionless peak pressure of the waves across the shadow boundary

for different y-vslues.

Both the measurements and the theory confirm the geometrical

shadow boundary as a line through the points in which the peak

pressure is the half of the peak pressure pm of the undisturbed

shock wave (measured directly in the light region). The experi—

'mental curves are drawn from the measured dimensionless peak

pressures by the employment of the method of least squares. Further.

the strong gradient in peak pressure in the x-direction across the

' shadow boundary is noted. which at y --loo on: shows a pressure

I decay at about 6oz within Ao mm. The same gradients decreases

‘ with increasing (negative) y in order by y e-looo m to show a

l pressure decay of 601 across about Zoo tea. The strong gradient is

among other things supposed to be due to the shock character of the

i wave, described by the short rise-tine.

The course of the theoretically found and the measured curves show

i a good accordance in the shadow region, apart from the course at
I, y - - loo mm. The extremely weak signals for x > So Im in the
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shadow region at y --lon mm prevented an accurate determination

of the pressure variation.

Further the measurmnts in the shadow regionshow I systematical

tendency. that the measured pressure values at the same x—coordinate

should increase faster than the calculated pressure values by in-

creasing distances in y. The agrent between the calculated and' -

the measured values. at the shadow boundary and in greater distance:

from it seems to be a reality in spite of relative movements of the

intermediate values.

so ayutemaxie.re1ative nowamenLof—m F9 seem to appear

in the light region. Also here a fair agreement between theory and

experiment is obtained although the influence of diffraction on the

incident shod-t wave seen: to appear further into the light region,

than prescribed by the theory. This night derive from non-lineari-

tiea in connection t6 the intetaétion h‘etwecn the diffracted wave

and the shock wave, 'a circumstance not considered in the theory.

The calculation and the measurements show that the rise-time of

the wave increases with increasing x-values in the shadow region,

leading to a displacaneat of the energy-spectre towards lower fre-

quencies. Thus figure 7 shows the calculated and the measured di-

mensionless pressure-tine variation at the position (x,y) - (Sn mm.

-loo m). where the peak pressure is not obtained until about 9

use: after the wave front.

The course of the two curves seems to underline the applicability

of the method of direct solution by the calculation of the dif-

fraction of weak shock waves.

Conclusion.

The theory and the measurnts have ahown the existence of a

well-defined light and shadow region in pressure hounded by a re-

latively sharp peak pressure gradient across the geometrical

shadow boundary. The fair agrent between the theoretically cal-

culated and the experimentnlly found values. in varying distances

behind the uni-infinite plane seems to support the applicability

of the method of direct solution and also to extend the method to

cmprise the diffraction of weak underwater shock waves by a semi-

infinite plane.
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Figure 7.

Pressure-time curves measured and calculated in the

Int: 3: I 50mm -100m .
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NOTATION.

Have velocity - shock veloeity - sound velocity.

Pressure functian, (index: 1.2.3 refer to'regiona on (113.1).

Pressure function by the incident pulse.

Peak pressure by the neck wave after diffraction.

Peak pressure at the incident shock wave beforediffraction.

Tina.

Substitution [- ct - (:2 o yz)i]

Substitution [- t - (2

Coprdinathn tne.curuqian.cnordina§engygtan figure 1.

Suhltitntion - (i1 o ,5]: y
Sub-citation '2 z i J

Coiirdinntemiia‘the cute-fan anr‘ain-te lyeun figure 1.

Substitution, [- (ct : yJ] .

Substituiiiifi' f '0 I. , _—L:

 

dimeiifi‘anle‘si coordinate for
aback nvu in Inter.

_ } Coordinates in the parabolic mrdinuc "rum.

Integrativn variable, introduced by (5).

Time constant in the exponential preuuro decay behind the
uhpck front.

Density of water.

Velocity potential.

Subltitution function, introduced by (17).

numbers in parenthelen () designate formulas in the text.

“when in brackets [ldelignnte referenun at the end of the

paper.
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