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A WDEL FOR EéMATING ACOUSTIC EMISSION AMPLITUDES
,Leif Bolin
Linkfiping Institute of Technology,
Department of Mechanical Engineering, Divisionof Solid
Linkoping. Sweden. Mechanics,

A model for calculating and describing the signal amplitudes for
acoustic emission stress waves is presented. The model is based
on Kosevich theory for moving dislocations and takes into account
the transfer function of the measurement system. see figure. The
aim of this work is to work out a complete model which gives a
possibility to correlate the amplitude of the measured electrical
voltage to the physical cvent within the material.

50 for however, the proposed model don't takes into consideration
the influence of the material damping on the signal amplitude.
This might be the next stepto improve the model;

The usual used measurement techniques, ring-down connting and di—
stribution analysis. don't give any direct correlation between
the absolute magnitude of the acoustic emission event and the re-
corded parameters.

1 Ilvf/LOdLlCtUJVl

There exist several, both simple and extensive models for describing
the AE-mechanism. To-day one cannot say that one model is better than

the other.

This paper presents a model based upon a dynamical dislocation theory
stated by Kosevich [IL

This model shows how the physical process can be related to the AE—
signal. Most of this is, however, pure mathematics, which is presented
in [II]. The last part of the work is not yet published, but will be
in the near future.

2 sum Field Mound a Tbnz—vMying Inelastic swan

Acoustic emission usually occurs due to a sudden change in the internal
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strain dis ribuLJon. To describe this AE-source we consider an inelastic

distribution

shy) _ m

We evaluate the stress-field around this time-varying inelastic strain

Equilibrium:

°Ui ‘“in = Cijuskm ‘ (2)

Note: U in Lhn total deforanion

w
um‘“ = 8mn + BM (3)

(2) and (3) give

“ _ t

“Ui ' cijkl ‘ Uk,£j ‘ ‘ Ciju Bun (h)

This differential equation can be solved using “FPHH'fi Funrhiwn-

Green's function represents the displacement Ui (5,6) due to a uniL

impulse force in the m—direction at ;' 1nd t‘, figure V.

The notation for Green‘s function is- aim (1 _ £1, E _ t.)

This means

" - =6 6 _ v _ ~pom ciju Gm,“ in. (5 5) 5h t) (5)

For an isotropic material G is known, see [11].

The solution to eq (h) is thus

Ui(;.t) = - cm.“ Idgldt'. gr [01!“(5- 5', t—t')] 8:1 (5‘, t)

(6)
J

Hookes law gives the stress

“ij = Ciju Bu
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Note:

.
a“ (5', t') = o for t'>t,

since we can have a response at time t only fromevents before t

s
We also consicer that Bk2 (5, t) = 0 for t = t w

In this way and after some mathematical manipulations one gets the

following expression for the stress

as

"5:930 “ ‘ 1‘15' f{u[Gsk'u(5-5',t-z') + G

+ AGSthquz(E_E‘it-L')}{u[B;k(Evltv) ‘ 8:1(Euitn)] +

. . . .* Mutian .t )}dc' .

We are interested in the stre

we measure the stress with some transducer which has‘a cvrtuiu fruqucncy

response.

 

tk.sl(5_5"t-tl)l +

 

(8)

in a certain frequency range. because

By transforming the stress from the t—plane to the m-plane we can take

in to the calculations the frequency.

We use the following expression for the Fourier—transform:

Fun] = I m)?” (it
-w

and the inverse

_ _1_ m -imt{[t] - 2"_£ FIm3e do

If we take into account that 5 >> 5' we got an expression for 05

this form

4.2.3
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1;.m) - S (m) (10)est (5.0:) = R k
stkfl

where the response of the medium is represented by B and the source

by §- ‘

with

germ—r >>1anda~c
a c

c = shear wave velocity

(transverse)

(distorsion)

a = longitudinal wave velocity

(dilatation)

and ignoring the orientetion dependence we find
iwr

1 c
mums "' ~c E11)

Inn—1c

 

Figure 1

Response U (5, t)

due to a force F (5'. t)
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2 The Sou/L22

In order to describe the source we assume a change in the inelastic

distorsion A B:j at time t = 0, see figure 2. As a first approximation

we use a step function. The displacement function has of course a

certain rise time, but this in very uhorL. Thus Fur prnuLicnl cases we

can use the step function. This matter is further discussed in ref [II].

Ski can be written

t 1t t 1 ( )
Skim) = 211A: V + “MACH” V 1‘ Lu

1k (12)

We have here assumed that the distorsion is homogenously spread out
*

nvur th nmuIL voiumv V

i 1 . *

AEEk = 5W3“ " ARkiL) . (‘3)
For the step function we have

rm) = - + new (114)
Let us simplify the expression for the source in this form

 

S(m) = D - f(w) - _ (15)

Summing up the discussion of the stress field in a point 1 se get

2 imr

“Lune ‘0 'ec -D-f(m) (16)
hflrzc

By retransforrning this expression we can get the 0(5. t].

3 Mng Agata:

Let us now have a look at a practical case where we measure the above

calculated stress. This can be done with a piezo—electrical transducer

which transforms the mechanical stress or mechanical pressure to an

electrical voltage. Because of the very broadbandcd stress pulse the

transducer normally is energized at resonance.

We can describe the transfer functions by figure 3.

4.2.75 '



 

Proceedings of The Institute of Acoustics

pi‘ju: t)

 

    
     
 

Figure 2

t l tThe source Bij (L - )
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If we call the transducer output V(;,u), we can write

V(;,m) = R(r,m) - 5(Lu) - Pm) (11')

In eq (15) we haven6(m) which vanishes for every Nexcept m 0.

Because of the filter we can drop this term in the following.

We also can see that because of the BP—filter we can change the limits

min cq (9) From 1.0"m‘ u) 'Am,m +(tw.
o n

If we are able to describe the transducer response in mathematical form

we can do the retransformation. This results in an expression for “5.6),

which can he studied on an oscilloscope or xy-recorder. From an amplitude

reading we can evaluate D, see eq (12).

4 DiAZaca/m'nn movement and Mt)

Let us new study D, to see the meaning of it.

Recalling (rq (121 my net

I- t u at

D — 2n A an v + MSsz :nnV (12)

For a plastic strain

t
A: = D

nn

thus

O t (

D = 2n A elk V 1

This can be related to dislocation hy

O l‘ t

A: v =be va (19)

where b = Burgers vector, Ax the distance the dislocations have moved,

and um the density of moving dislocations.

4.2.1



 

   

   

  
   

   
  

   

   

    

   

  

   

  

Proceedings 0! The Institute of Acoustics

Thus D is related to the strain. A numerical calculation based upon

date from James—Carpenter [IV] gives'

u t _
A: V a 3 - 10 in m3

With the model presented in this paper and a Dunegan/Endevco—transducer '

D—1h0 the peak amplitude should be200 uV. A signal with this amplitude

is fully detectable.

5 ConcludionA and Summaay

The model is schematically summarized in figure h.

Here the model and the evaluations are simplified and give only a first

step to get a complete knowledge of how themeasured voltage is connected

with the physical event.

When working with ring down counting or distribution analysis the

observed parameters have nodirect correspondence with the physical

process within the material. To be a "compute" ND'r-method, the AE-

technique should give answer not only to the questions wheae and when,

but also ufiult has taken place.
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Figure to Block diagram of the model

4.2.9 


