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A model for calculating and describing the signal emplitudes for
acoustic emission stress waves is presented. The model is tased
on Kosevich theory for moving dislocations and takes into account
the transfer function of the measurcment system, see figure. The
aim of this work is to work out a complete model which gives a
possibility to correlate the emplitude of the measured electrical
voltage to the physical event within the material.

So for however, the proposed model don't takes inte consideration
the influence of the materiasl damping on the signal amplitude.
This might be the next step to improve the model.

The usual used mecasurement techniques, ring-down connting and di-
stribution analysis, don't give any direct correlation between
the absolute mapnitude of the acoustic emission event apd the re-
corded paramcters.

1 Luthoduction

There exist several, both simple end extensive models for describing
the AE-mechenism. To-day one cannot say that one model is bettar than
the other.

This paper presents a model based upon a dynamical  dislocation theory
stated by Kosevieh [I].

This model shows how the physicel process can be related to the AE-
signal. Most of this is, however, pure mathematics, which is presented
in [II]. The iast part of the work is not yet published, but will be

in the near future.

2 Stress Field around a Time-vanging Inefastic Staain

Acoustic emission usually occurs due to a sudden change in the internal
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strain distribulion. To deseribe this AE-source we consider an inelastie

distribution
*
B (r,t) _ {n

We evaluate the stress-field around this time-varying inelastic strain

Equilibrium:
P T %45,5 7 Cignefie, o
(2}
Nabe: If is bthe total deformalion
»*
M Bam * B (3)
{2) and (3} give
- c *
PU; - Ciine * Y,y T Cigne Prej (L)
This differential equation can be solved using firccn's Innclion,

Green's function represents the displacement Ui (g,t) due to a unit

impulse force in the m-direction at v nnd t', figure 1.

The notation for Green's function is - Gy (-t - t")

This means

G. - =68, 8{r - ') By - !
PG = Ciske Ckm,t3 im -} 8e - tt) {5}
For an isotropie material G is known, see [II}.

The solution to eq (W) is thus

oo

%

*
[Gim(l._ r, t-t‘)] Bp {r's t)

(6}

Ui(x,t) = - Coixd Id;;{dt‘.

Hookes law gives the stress

% = Cisee P
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Note:
*x
Bkl {r', t') = 0 for t'>t,
gince we can have a response at time t only from events before t
E
We also consicer that Bkﬂ (r, t) =0fort = o

In this way and after scme mathematical manipulations one gets the
following expression for the stress

- ‘ {8}
0,.(E.t) = = far’ f{u[G (x-r',e-c') + 6,

sk, et NSRS

Aﬁsthquz(E‘E'.‘t-t')}{ul‘ﬂzk(g'.t') s B2 )] -

2 » ] .
+ loklﬁnn(z ,t )}d;r'

We are interested in the stress in a certain freguency range, because
we measure the stress with some transducer which has'a ceortain fivquency

response.

By transforming the stress from the t—plaﬁe to the w-plane we can take

in to the caleulations the frequency.

We use the following expression for the Fourier-transform:

Flul = [ £(t)el®® g4 (9)

-0

and the inverse

o0
-1 it
T[t] = Qﬂ-l Flwle dew

If ve take into account that r »> r' we got an expression for Ot in

this form
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gy (r,w) =R (r.w) - 5 (w) (10)

stk k
where the response of the medium is represented by R and the source
by 8.

With

wr,, wbr »> 1 and a & ¢
a c

¢ = shear wave velocity
(transverse)

(distorsion)

longitwlinal wave veloclty

©
n

(dilatation)

and ignoring the orientation dependence we find
iwr

¢
c

R{r,m) =

bnr?c

Figure 1

Response U (r, t)

due to a foree F (r', t}
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? The Source

In order to describe the source we assume & change in the inelastic

distorsion A B:j at time t = 0, see figure 2. As a first approximation

we use a step function., The displacement function has of course a

certain rise time, but this is very shert. Thud for prackieal cases we

can use the step function. This matter is further discussed in ref [11].
; skl can be written

M x % ()
{w} = EUAEEk v o+ Adkgaznn v {{w

Sy (12)

We have here assumed that the distorsion is homogenously spread out

*
over Lhe smind ) volome W

%* 1 * *
Beyy = 5B, + 88,0 _ (13)

For the step function we have

rlw) = - 7= + T8(w) (1)

Let us simplify the expression for the source in this form

S(w) =D - f£la) . o {15}
Summing up the discussion of the stress field in & point r se get
iwr
alr, o) = «+e® «De flu (16}
hnric

By retransforming this expression we can get the o{r, t).

3 Measuning aystem

et us now have a look ot a practical case where we measure the above
calculated stress. This can be done with a piezo-electrical transducer
which transforms the mechanical stress or mechanical pressure to an
electricel voltage. Because of the very broadbanded stress pulse the

transducer normally is energized at resonance.

We can describe the transfer functions by figure 3.
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Figure 3 Transfer functions
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If we call the transducer output V(r,w), we can write

Vir,w) = Rir,w) « 3{w) + Plu) (11)

In eq (15) we have m6{w) which vanishes for every w except w = 0.

Because of the filter we gcan drop this term in the following.

We also can see that because of the BP-filter we can change the limits

in eqg (9) Trom -m, m o W, Aw, o + &Ly,

If we are able to describe the transducer response in mathematical form
we can do the retransformation. This results in an expression for V{r,t),
vhich can be studied on an oscillascope or xy-recorder. From an amplitude

reading we can evaluate D, see eq (12).

4 Disocation novement and V)
Let us now study D, to see the meaning of 1it.

Recalling <a (121 we pet

»

D=2ua eﬂk

* *
Vot A8 8 e ¥ (12}
For a plastic strain

*
bE =0
nn

thus

w (18)
D=2pa Eik v 1

This can be related to dislocation hy
* x *
AE V = b Ax NmV (19)

where b = Burgers vector, Ax the distance the dislocations have moved,

and Nm the density of moving dislocations.




Proceedings of The Institute of Acoustics

Thus D is related to the strain. A numerical calculation based upon

date from James-Carpenter [IV] gives"

* % -

At V e 3 - 10 1h m3
Yith the model presented in this paper and a Dunegan/Endevco-transducer
D-140 the peak amplitude should be 200 uV, A signal with this amplitude
is fully detectable.

5 Conclusions and Summary
The model is schematically summarized in figure L.

Here the model and the evaluations are simplified and give only a first.
step to get m complete knowledge of how the measured voltage is connected

with the physical event.

When working with ring down counting or distribution analysis the
abserved parameters have no direct correspondence with the physical
process within the material. To be a "compfefe" NDT-method, the AE-
technique should give answer not only to the questions where and when,

but also whatl has taken place.
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