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ABSTRACT

A framework for hypothesis refinement in the SYLK project is described. For a general overview of SYLK see the
companion paper in this volume, (Green et al{3]). In SYLK, statistical and knowledge based technigues are used
fo construct a model of the syllable upon which evidential reasoning can be applied for classification. Both
Bayesean updating and Shafer’s Belief Functions are considered s evidential reasoning Jormalisms which satisfy
the structure and constraints implied by the modet ond g form of consirained Dempster's mule is suggested.

INTRODUCTION

SYLK is {a project which aims to produce) an ASR front end in which classification takes place around the
Syllable (Green et al {3]). Given a rough, mid class, segmentation of some utlerance - of which only the
approximate location of the Syllable nuclei is really essential - SYLK attempts to classify each syllable
independently as an ordered laltice consisting of possible syllable onscts, peaks and codas. A Statistical and
Knowledge-based model of the syllable is used.

In what follows we shall consider systems of hypothesis refincment which can be used to classify evideoce
within the constraints of this model, Tn the next section, then, we sketch out the model's characleristics and
define what is required of hypothesis refinement. After this, Bayescan updating (Dempster(2]) and Belicf
Functions (Shafer [6]) are compared, with respect to one of the constraints, and a method is proposed.
Finally, ways of satisfying the remaining constraints within this chosen formalism are suggested

THE CONSTRAINTS (rthe syllable model}

The syllable model is a network structure of nodes and arcs with both conslituent and refincment planes.
Thus, a Syllablc has constitucnts, ordered in time, opticnal onset followed by rhyme and a rhyme has
constituents Peak followed by Optional Coda, each of which must be classified. This classification is donc in
terms of probabilistic decisions made down a refinement network associated with each of these syllable
constituents. Output from the refinement network is a lattice consisting of the deepest nodes reached ordered
in terms of their cerlainty value. (we use the word "certainty” here to emphasise 1hat the formalism necd not
use probabilitics, even though probabilities have been adopted for SYLK). The rhyme refinements, however,
do not make part of the output lattice. Instead, they are used to model known dependences which exist
betwecn the peak and coda by constraining the co-occurence of various peak and coda refinements. The
refinements of rhyme, then, will have refinements of peak and coda as their constiluents.

These probabilistic decisions ate made with the usc of refinement tests. Tests, are located at gcﬂncmml .
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nodes (a test may be linked with one or several nodes) and are said Lo have a "domaia”, which is the set of
most basic syllable constituents whose ancestor is one of those nodes. A test has a "process”, which examines
some representation of the evidence 1o teturn a vector, and a statistical description of the performance of
various subsets of its domain - generally, those syllable constituents reached by the arcs of the node(s) al which
it applics - over the process. Given somc ncw evidence, then, a Bayesian classifier can be used to distinguish
between these sets.

To complete hypothesis refinement, then, a method of evidential reasoning is needed lo mediate the
cerlainties returned from many different tests, accommodating the constraints betweea different refinement
planes, down towards the end nodes. This evidential reasoning formalism should;

(A) compliment the network structure of our refinement planes; eg, syllable constituents should only be
considered as hypotheses, with measures of certainty, al a Jevel as decp in the network (as specific) as the
present state of evidence has suggested.

(B) cope with the constraints that exist berween constituent refinement planes, where, for example, refining
the peak may affcct refinements of the coda.

(C) be made 1o account for the pon independence which exists between the different tests.

THE ALTERNATIVES (evidential reasoning formalisms)

In this scction, [ shall consider both Bayesian Updating {Dempster[2]) and Belief Functions (Sbafer(6]),
assuming that the reader has a knowledge of Bayes and some acquaintance with Belief Functions. Initially,
this will be a general discussion, relating mainly to constraint (A) from the last section. Constraints (B) and
(C) will then be considered in the following section on extension to the chosen formalism, as they are not
considered as relevant 1o its choice as (A).

Traditicnally, Bayesian updating has been used for evidential reasoning, but more recently people (perhaps
compuler scientists rather than statisticians) have criticised it (Shafer(8), calling for a tcchnique which; (i),
does not require prior probabilitics, and (i), has two measures - of support (ie probability) and knowledge (or
confidence in thal support) - rather than the single measure of probability. These are both relcvant to {A).
Bayes is lraditionally centered about singleton hypotheses, and this would scem problematic in that prior
probabilities assigned to singlcton hypotheses supgest a level of specificity that is not reflected by any evidence.

It is with respect (o these issues that Shafer's Belief functions appear Lo offer some solution, Belief Functions
arc presented as an allernative to Bayes which, it is claimed (Shafer{7]), solve problems (i) and (ii). However,
they too have been criticised as having no real semantics and thus no real justification. Their inveator, Shafer,
has defended them against this charge (Shafcr[8]), by saying that probability, itself, has only an anccdotal
scmantics, providing a similar ancedotal view of his alternatives to probability, Mass and Beliel. [n the space
provided bere we can not go into a full consideration of this semantics. However, we will present a briel -
description of Belicl Functions including an example which reveals the problems thal they have with respect
10 satisfying (i) and (ii). : -

With Beliel Functions, unily of mass is distributed, unlike probability, over the power sct of some mutually
exclusive sct of possibilitics. This mcans that we can ignore the need for prior probabilitics {esiticism (i)} by
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representing our state of no knowledge as a mass of 1 assigned to the whole hypothesis set.  However, as we
shall see, this is not such a useful abstraction as Shafer claims. It is possible to treat mass as probability. This
is done by constructing exclusiveness between the members of the possibility power set. So that, for example;

S - {{abcY{ab}{ac){bc}{a}{P}{c}} becomes

8 = {{ag by ca}{an bp){ac cp){be ¢} {agHbaHeal}
where a = {a, ap, a; ag} elc

Given an assignment of mass over this new power set, we find that treating mass as probability we can
calculate lower and upper bounds of probability for @, b & ¢, using (1), which are equivalent 1o their Belief and
Plausibility as defined for Beliel Functions, These two measures, of belief and Plausibility, have been claimed
as the solution to problem (ii) in that we have a window of no-knowledge, rather than a probabilistic point.
But if this window is simply an upper and lower bound on probability, then the difference between them is
specilicity, rather than a measure of knowledge. |

pla) = 5 pl\5)) )
for every set, b;, upon which a depends.

Criticism (ii) is not so relevant (o our needs however, and an awareness of specificity would seem to suit (A)
although we do not need to actually have a measure of it. The claim over prior probabilities is more
itnportant.

Belief functions use Dempster's rule, as an alternative to Bayesian updating (or rather, as a generalisation of
it). It is used to combine the evidence from two independent sources. Consider this example;

Mass is assigned over the power set of {@ b ¢ o} in two distributions;

Mal  {a} =03 Ma2is {a} = 0.3
{6} = 03 {b} = 03

{ed) = 04 {c} =02

{d} = 02

with all the other possible sets assigned mass 0. First consider what is meant by these distributions, and what
the differences are between their meanings. We might want to say that Mal is in a state of less specificity than
Ma2, as the latter has the mass assigned to {¢,d} evenly distributed amongst its parts. However, we could say
that both are in the same state of uncertainty,

MNow consider using Dempster's rule to combine each of these with a third mass distribution;

Malis {as} =05
{bd} = 05

This distribution says, effectively, that {e.c) and {bd} arc just as likely, but that noihling is known about the
distribution of @ as toc and b asto 4. ’ )

To apply Dcmpslcr'sii’hle every element of one mass assignment is intersected with every clement of the other,
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and a new mass assigned (o these intersections as the product of the mass assigned to the imlersecting
clements. New masses assigned Lo Lhe same sets are summed. With Mal and Ma3, then we get;

{a) = 0503 {b}) = 03%05 {c} = 0504 {d} = 05"0.4 {} = 0.3°0.5+0.3*0.5
Note, that, the masscs assigned 10 these intersections still sum to one. However, we bave mass assigned to the
empty set, which Shafer normalises out, by dividing each of the other masses by F, where F = 1 - mass({oull}}.
Finally then, we can consider the combination of Mal with Ma3 and Ma2 with Ma3.

Mal o Ma3 = Ma4 and Ma2 o Ma3 = Ma5

Madis {a) = 0.2142857 MaSis {a} = 03
{b} = 02142857 [t} =03
{c} = 028571427 {c} =02
(d} = 028571427 {d} = 02

The two possible outcomes are very different. The former, Mad, assigning more weight, on the whole, to the
pair {c,d}, and the latter, Ma3, to {ab}. This is problcmatic, in that neither of (the primary distributions, Mal
or Ma2 suggest that {cd} is assigned greater vajue than {g,b}, in fact both suggest that the reverse is the case,
There is nothing to suggest this in Ma3 either. And yet Mad has made that deduction. '

‘What has happened is (hat in combining Ma3 with Ma1, whilst calculating the new mass assignment to ¢, ¢ has
been given the benefit of the 'non specific information’ doubt between o or ¢ and assigned p(c) = 0.4 whilst
p(d) = 0. At the same time, however, the benefit has alsa been given to d assuming that p{d) = 0.4 and p{(c)
= 0, which contradicts the previous assumption. These disproportionate weight assignments are then covered
up during normalisation, ai the cxpense of the remaining hypothesis sets, {ab}, which, as they were assigned
mass on the singleton level did not have the collective weight to keep a fair proportion of the new assignments
to themselves.

From this vicw of the Eclicf Functional use of Dempster's rule, it would seem reasonable to suggest that the
second resultant, Ma3 is the favourable one for both instances. However, suggesting that Ma2 is always used
in place of Mal makes an assumption of specificity, assigning equal mass to ¢ and d, effectively loosing the
bencfit Belief Functions afford us in requiring no prior probabilities (criticism (i)). We can, however, choase
to make the assumption of specificity afforded by Ma? over Mal, (ie to have prior probabilitics) only in those
cases where the new evidence is going to requirc that we make such an assumption. This is trivial to
implement in that we simply have to determine, what new discriminations some piece of evidence is going to
make and will prevent the problematic results shown in the example. However, we arc left with the fact that
this uce of Dempster’s rule, affords us only a gain in convenicnce over Bayes, which could equally well be
implementcd this way.

EXTENSIONS

Given our choice of a constrained Dempster’s rule we are now in a position 1o tum to constraints (B) and (C).
As we have scen, issucs surrounding the use of Bayes or Belief Functions have not really been concerned with
{B) or (C). To this cxtent, then, our choice of formalism is not important as we will have to devclop our own
procedurcs which satisfy the constraints and work within the evidential reasoning without impairing it. Work
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is still underway in formalising such procedures and will doubtless be the subject of future publications. A
sketch, however, of the forms under consideration can be given,

First, for a metbod of enforcing the coastitucnt constraints of the model (B). Consider this example, removed
from tbe domain of syllable hypotheses.

A unit / has constituents m and n, and refinements {1, /3 & I3, acting as the Syllabic Rhyme to constrain co-
reflinements of m & n. Furiher to this; m has refincments my & my, n has refinements ny & ny ;) consists of
my & ny, 1 of my & ny, and i3 of my & n5. This effectively bars the co-occurence of my and ny and enables
us Lo have separate statistical information about m13 for both of its right contexts, nq or a3,

ie, Constituent planes

m my my mj
1 < ! 1< f2< ’3<
n m rnq ny
and Refinement planes
h 1 g
l.érz m n <
Iy niy ny

'Now, starting from a.point of no knowledge;

plf} = pim) =pln) = 1
Say we were to receive some evidence, from a test al /, suggesting that;
(2

We can update p(f) = 1 with our constrained Dempster's rule, 1o produce;

I =03 1=0413=03

h=031h=0404=03 ic(2)

But in view of the implicit constraints we must also update the reficemeats of /m & n, We can do this by
producing the cquivalent of (2) in terms of m & » . Knowing that /4 consists of my & nq __etc, we can derive
from (2);

my&ny =03 ma&ny =04 my&ny=03 (3)

and scparating wilh respect 1o the two refinement planes

my =03 my =04 miy =03 & ny =03 ny = 04 n2=.0.5 (@)
which can update beir respective states, with the constrained Dempster’s rule, to produce;
my = 03 my = 0.7 and a1 = 0.7 ny = 03

Now, these results secm 16 reflect the sort of information that the evidenee (2) suggests, and the method used
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would scem 10 be robust and applicable in all possible situations. We must simply crcate new mass
assignments from the evidence for all the refinement planes in which the evidence has constituent conncctions.
We notice that the output does, in fact, allow the chance of m & 13 co-occuring - this is because there is not
an equivalence between (3) and {4): (a & b} or (¢ & d) = (a or ¢) & (b or d) - but the probability assigned to
this possibility is very low {0.09) and this sort of result represents, perhaps, the best way of enforcing that
constituent constraint within a probabilistic Jattice where contingent information can not be expressed. It also
softens the hard and fast characteristics of the model in a way that, when we consider the knowledge-based
derivation of its structure, is nol that unwelcome. We stress, however, that this method is intuitive and has not,
to our knowledge, received any formal investigation. .

Finally, then, to the method of taking into account the interdependence between tests (C). This exists berween
tests that share evidential data. For Bayes or Dempster’s rule to be valid, evidence, must be independent, and
the best way to avoid the problem of test dependence would be just to have a single combined test which
characterises a single combined feature space over all classes. There are two reasons why this is not done.
The first, is that the model siructures decisions into natural stages which facilitate the guide of phonetic
knowledge and cnable tests with non-intersecting domains to be trained independently. The second, is that
estimating the large co-variance malrix required by a combined feature vecior space would need a large and
prohibitive amount of data. Assuming independence requires a far smaller amount of data, but might lead to
problems in the reduction of information expressed by the statistical characterisation. A compromise, under
consideration at the time of wriling might be to produce a single figure value of tests’ dependences, say;
det[covariance-matrix combin
det{cav.mat. testl] + detfcov.mat. test2}

which can then be used to reduce the effect of new evidence upon old in Dempster’s combination rule.

This introduces a pew problem, however. Namely, the combinatorial requirement of producing an
interdependence value for every individual test with every possible combination of tests that could have
preceded it. 'We can, however, consider a sensible subset of these values which enforce the minimum of
constraints on the ordering of 1ests chasen by the scheduling system.

CONCLUSION

A method of cvidential reasoning has becn proposed for SYLK that complimenis the structure of its syllable
model. This involves a form of constrained Dempster’s rule. EXTENSION to this, which satisly the other
constraints of the model have also been proposed, but await a serious investigation, and hopefully, justification,
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