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ABSTRACT

A framewodrfor hypothetit Ie/inemertl t‘n tlte SYLKproject is described. For a 30mm! overview of SYLK see the

companion paper in this volume. (Green et nl[3]). In SYLK statistical and knowledge based technique: are used

to construct a model of the syllable upon which evidential reasoning can be applied for classification Both

Buyesun updating and Shafer'r BeliefFuncu‘oru are considered a; evidential reasoningfomtaiilrn: which may

the structure and cmtmint: implied by the model and t1 form ofconstrained Dempster': rule it ingested.

INTRODUCTION

SYLK is (a project Which aims to produce) an ASR front end in which classification takes place around the

Syllable (Green et al [3]). Given a rough, mid class. segnentation of some utterance - of which only the

approximate location of the Syllahle nuclei is really essential - SYLK attempts to classify each syllable

independently as an ordered lattice consisting 0' possible syllable onsets. peaks and codas. A Statistical and

Knowledge-based model ofthe syllable is used.

in what follows we shall consider systems of hypothesis refinement which can be used to classify evidence

within the constraints of this model. In the next section, then. we sketch out the model's characteristics and

define what is required of hypothesis refinement. After this. Bayesean updating (DempsterlZI) and Belief

Functions (Shafer [6]) are compared, with respect to one of the constraints. and a method is proposed

Finally, ways of satisfying the remaining constraints within this chosen formalism are suggested

THE CONSTRAINTS (Ille syllable model)

The syllable model is a network structure of nodes and arcs with both constituent and refinement planes.

Thus, a Syllable has constituents, ordered in time, optional onset followed by rhyme and a rhyme has

constituents Peak followed by Optional Coda. each of which must be classified. This cla§ilicalion is done in

terms of probabilistic decisions made down a refinement network associated with each of these syllable

constituents. Output from the refinement network is a lattice consisting of the deepest nodes reached ordered

in terms of their certainty value. (we use the word 'certainty' here to emphasise that the formalism need not

use probabilities, even though probabilities have been adopted for SYLK). The rhyme refinementsI however.

do not make part of the output lattice. Instead. they are used to model known dependence: which exist

between the peak and coda by constraining the co—oecurcncc of various peak and coda refinements. The

refinements of rhyme, then, will have refinements of peak and coda as their constituents.

These probabilistic decisions are made with the use of refinement tests. Tests, are located at refinement

'Proo.l.o.A. Vol 12 Part 10 (1990) ' 139



 

Proceedings of the Institute oi Acoustics

SYLLABLE BASED HYPOTHESlS REFINEMENT IN SYLK

nodes (a test may be linked with one or several nodes) and are said to have a 'domain', which is the set of

most basic syllable constituents whose ancestor is one of those nodes. A test has a 'proccss", Which examines

some representation of the evidence to return a vector. and a statistical description of the performance of

various subsets of its domain - generally, those syllable constituents reached by the arcs of the node(s) at which

it applies — over the process. Given some new evidence, then, a Bayesian classifier can be ttsed to distinguish

between these sets.

To complete hypothesis refinement, then, a method of evidential reasoning is needed to mediate the

certainties returned from many different tests, accommodating the constraints between different refinement

planes. down towards the end nodes. This evidential reasoning formalism should;

(A) compliment the network structure of our refinement planes; eg, syllable constituents should only be

considered as hypotheses. with measures of certainty. at a level as deep in the network (as specific) as the

present state of evidence has suggested.

(B) cope with the constraints that exist between constituent refinement planes, where. for example, refining

the peak may affect refinements of the coda.

(C) be made to account for the non independence which exists between the difl'ercnt tests.

THE ALTERNATIVES (nidcnn‘al reasoningformalisms)

in this section1 i shall consider both Bayesian Updating (Dempster[2]) and Belief Functions (Shafer[6]),

assuming that the reader ha a knowledge of Hayes and some acquaintance with Belief Functions. Initially,

this will be a general discussion, relating mainly to constraint (A) from the last section. Constraints (B) and

(C) will then be considered in the following section on extension to the chosen formalism. as they are not

considered as relevant to its choice as (A)

Traditionally, Bayesian updating has been used for evidential reasoning, but more recently people (perhaps

computer scientists rather than statisticians) have criticised it (Shafcl'lsl). calling for a technique which; (i).

does not require prior probabilities, and (ii)l has two measures - of support (ie probability) and knowledge (or

confidence in that suppon) - rather than the sinye measure of probability. These are both relevant to (A).

Bayes is traditionally centered about singleton hypotheses, and this would seem problematic in that prior

probabilities assiyted to singleton hypotheses suggest a level of specificity that is not reflected by any evidence.

it is with respect to these issues thatShafer's Belief functions appear to offer some solution. Belief Functions

are presented as an alternative to Bayes which, it is claimed (Shafer[7]), solve problems (i) and (ii). However,

they too have been criticised as having no real semantics and thus no real justification. Their inventor, Sharer,

has defended them against this charge (Shafer[8]), by saying that probability. itself. has only an anecdotal

semantics, providing a similar anecdotal View of his alternatives to probability. Mass and Belief. In the space

provided here we can not go into a full consideration of this semantim. However. we will present a brief '

description of Belief Functions including an example which reveals the problems that they have uith respect

to satisfying (i) and (ii). ‘

With Belief Functions. unity of mass is distributed. unlike probability, over the power set of some mutually

exclusive set of possibili cs. This means that we can ignore the need for prior probabilities (criticism (i)) by
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representing our state of no knowledge as a mm of 1 assigned to the whole hypothesis set. However, as we
shall see, this is not such a useful abstraction as Shafer claims. It is possible to treat mass as probability. This
is done by constructing exclusiveness between the members of the possflyility power set. So that, for example;

S ((41 fl c)(a b}(a c)(h c){n)(b}(c)) becomes

5 = (Us ba ‘aii‘b bbllflc Cbiibc Cc) ("allbdlicdll

where a = {each need} etc

Given an assignment of mass over this new power set, we find that treating mass as probability we can
Calculate lower and upper bounds of probability for a, b it e, using (I). which are equivalent to their Belief and
Plausibilityas defined for Belief Functions. These two measures, of belief and Plausibilit'y, have been claimed

as [he solution In problem (i) in that we have a window of no-knowledge, rather than a probabilistic point.
But if this window is simply an upper and lower bound on probability, then the dill'erenee between them is
specificity. rather than a measure oi knowledge.

POI) = E(t>(bi)-p(u\bt)) (1)
for every setI bi. upon which n depends.

Criticism (ii) is not so relevant to our needs however, and an awareness of specificity would seem to suit (A)
although we do not need to actually have a measure of it. The claim over prior probabilities is more
important.

Belief functions use Dempster's rule. as an alternative to Bayesian updating (or rather, as a generalisation of
it). It is used to combine the evidence from two independent sources. Consider this example;

Mass is assigned over the power set of (a b e d) in two distributions;

Mal (a) = 0.3 Mazis {a} = 03

(a) = 03 (a) = 03
(ed) = 0.4 (c) = 0.2

(d) a 0.2

with all the other possible sets assigned max 0. First consider what is meant by these distributions, and what
the differences are between their meanings. We might want to say that Mat is in a state of less specificity than
Mal, as the latter has the mass assiyled to (Cd) evenly distributed amongt its parts. However, we could say
that both are in the same slate of uncertainty.

Now consider using Dempster‘s rule tocombine each of these with a third mass distribution:

Mail is (u) = 0.5
(M) = Q5

This distribution says, effectively, that (u) and (but) arejust as likely, but that nothing is knoim about the
distribution ofn as to c and b as to d. '

To apply Dempster'sfi‘itle every element of one mass assignment is intersected with every element of the other.
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and a new mass assigned to these intersections as the product of the mass assigted to the intersecting

elements. New masses assigned to the same sets are summed. With Mat and Ma3, then we get;

(a) = 05-03 (a) =- 03-05 (c) = 0540.4 (4) = 0.5-0.4 () = os-os+o._3~o.s

Note. that. the masses migned to these intersections still sum to one. However, we have mass assigned to the

empty set. which Shafer normalises out. by dividing each of the other masses by F. where F = 1 - ma§((null)).

Finally then. we can consider the combination of Mat with Ma3 and Ma with Ma3.

Mal 0 Mai) a Matt and Ma 0 Ma3 = Mas

Ma4is (a) = 0.214257 Mas is (a) = 03
(b) - 0.2142857 (a) = 03
(c) = 023571427 (c) a 0.2
(d) = (123571427 {4) = 0.2

The two possible outcomes are very dillerent, The former. Ma4. asigning more weight. on the whole, to the

pair (ed). and the latter. Mas. to (tab). This is problematic. in that neither of the primary distributions, Mat

or Ma2 suggest that (ed) is assigned yeater value than (fl'b), in fat: both suggest that the reverse is the case.

There is nothing to suggest this in Ma3 either. And yet Mad has made that deduction. '

What has happened is that in combining Ma3 with Mal. whilst calculating the new mass assignment to c. c has

been given the benefit of the 'non specifie information’ doubt between d or c and assigned p(c) = 04 whilst

p(d) = 0. At the same time. however. the benefit ha also been given to :1 assuming that p(d) = 0.4 and p(c)

= 0. which contradicts the previous assumption. These disproportionate weight mignments are then covered

up during normalisation. at the expense of the remaining hypothesis sets. (ab). which. as they were assigned

mus on the singeth level did not have the collective weight to keep a fair proportion of the new assignments

to themselves.

From this view of the Belief Funetional use of Dempster's rule. it would seem reasonable to suggest that the

second resultant. Mas is the favourable one for both instances. However, suggesting that Mn is always used

in plane of Mal makes an mumption of specificity. asigning equal mass to e and d, effectively loosing the

benefit Belief Functions afford us in requiring no prior probabilities (criticism (i)). We can, however. choose

to make the assumption of specificity afforded by Ma2 over Mal. (ie to have prior probabilities) only in those

cases where the new evidence is going to require that we make such an assumption. This is trivial to

implement in that we simply have to determine what new discrimination: same piece of evidence is going to

make and will prevent the problematic results shown in the example. However. we are left with the fat: that

this use of Dempster’s rule. affords us only a gain in oonveniencepver Bayes, which could equally well be

implemented this way.

EXTENSIONS

Given our choice of a constrained Dempster's rule we are now in a position to turn to constraints (B) and (C).

As we have seen. issues surrounding the use of Bayes or Belief Fundions have not really been concerned with

(B) or (C). To this enent. then. our choice of formalism is not important as we \till have to develop our own

procedures which satisfy the constraints and work within the evidential reasoning without impairing it. Work
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is still underway in [tantalising such procedures and will doubtless be the subject of future publications. A
sketch, however, ofthe forms under consideration an be given.

First, {or a method of enforcing the constituent constraints of the model (B). Consider this example, removed
from the domain of syllable hypotheses.

A unit I has constituents m and n, and refinements 11. (2 & I3. acting as the Syllabie Rhyme to constrain co-
refinentenls of m & n. Funher to this; nt has refinements m1 & mg, n has refinements n1 & "2 I1 consists of
m1 & "1,12 ol'mz tie n1. and I3 ofmz & '12. This effectively bars the co-occurenee ofml and n2 and enables
us to have separate statistin information about m2 {or both or its right contexts, n1 or n2.

ie. Constituent planes

m m1 m2 m2

I< lt< 12< I3<
n n1 n1 n2

and Refinement planes

’1 1 "1
(<5 m n<

'3 m2 "2

Now, starting from a-point of no knowledge;

' pt!) = pan) = pot) = 1 n '
Say we were to receive some evidence. from a test at I. suggesting that;

I, a 0312 = 0.413 = 03 (2)

We can update P0) = I Will: our constrained Dempster’s rule, to produce;

I1 = 0312 = 0.413 a 03 ie (2)

But in view of the implicit constraints we must also update the refinements of m a n. We can do this by
producing the equivalent of (2) in lenns nfnr It It . Knowing that ll consists olml & n1 mete we can derive
[mm (2);

mlanl = 03 man] = 0.4 mzanz — 03 (3)

and separating with respect to the two refinement planes

m1=03m2=0.4m2=03&n1=03n1-0.4n2=-0.3 (4)

which can update their respective states. with the constrained Dempster‘s rule. to produce;

m1 - 0.3 m; - 0.7 and :11 = 0.7 n; = 0.3

Now, these resullssoem lo reflch the sort ofininrmation that the evidence (2) suggests. and the method used
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would seem to be robust and applicable in all possible situations. We must simply create new mass
assignments from the evidence for all the refinement planes in which the evidence has constituent connections.
We notice that the output does. in fact, allow the chance ofntl & n2 co-occuring - this is because there is not
an equivalence between (3) and (4): (a & b) or (c & d) = (a or c) & (b or d) - but the probability assigned to
this possibility is very low (0.09) and this sort of result represents, perhaps. the best way of enforcing that
constituent constraint within aprobabilistic lattice where contingent information can not be expressed. It also
softens the hard and fast characteristics of the model in a way that. when we consider the knowledge-based
derivation ofits structure, is not that unwelcome. We stress. however. that this method is intuitive and has not.
to our knowledge, received any formal investigation. ~

Finally, then, to the method of taking into account the interdependence between tests (C). This exists between
tests that share evidential data. For Bayes or Dempster‘s rule to be \alid. evidence, must beindependent, and

the best way to avoid the problem of test dependence would be just to have a single combined test which
charaderises a single combined feature space over all clams, There are two reasons why this is not done.
The first. is that the model structures decisions into natural stages which facilitate the guide of phonetic
knowledge and enable tests with non-intersecting domains to be trained independently. The second, is that
estimating the large covariance matrix required by acombined feature vector space would need a large and
prohibitive amount of data. Aguming independence requires a far smaller amount of data, but might lead to
problems in the reduction of information expressed by the stat‘utical characterisation. A compromise. under
consideration at the time of writing might be to produce a singe figure value of tests‘ dependences. say;

d cvrin -m rix ' I
detIcovmat. testll + del[ch.mal. test2)

which can then be used to reduce the elfch of new evidence upon old in Dempsler’s combination rule.

This introduces a new problem. however. Namely; the combinatorial requirement of producing an
interdependence value for every individual test with every possible combination of tests that could hate
preceded it. We can, however. consider a sensible subset of these values which enforce the minimum of
constraints on the ordering of tests chosen by the scheduling system.

CONCLUSION

A method of evidential reasoning has been proposed for SYLK that compliments the structure of its syllable
model. This invohcs aform of constrained Dcmpstcr’s rule. BtTENSION to this, which satisfy the other
constraints of the model hate also been proposed. but await a serious investigation, and hopefully, justification.
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