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A numerical body force model of immersed boundary method is derived in this paper, to simu-

late the flow-induced noise from complex geometries by solving the compressible Navier-

Stokes equations on a fixed Cartesian grid. To obtain the numerical form of the body force, a 

relevance matrix named “influence matrix” is constructed to accurately satisfy the no-slip wall 

boundary conditions via the Dirac delta function. The singularity of the Dirac delta function is 

eliminated by involving a smoothed approximation, both the low-storage Cholesky decomposi-

tion and preconditioned conjugate gradient methods for the highly sparse influence matrix are 

developed to solve the linear equations. The high-order finite difference schemes and nonlinear 

nonreflecting boundary conditions are employed. In order to validate the computational model, 

laminar flow around a circular cylinder is simulated. Both the flow and sound fields are com-

pared with the previous results. Furthermore, the radiated sound fields from an oscillating circu-

lar cylinder in a uniform flow are studied. The relationship between the oscillating frequency 

and the radiated sound is presented. All these numerical studies exhibit the capacity of the pro-

posed immersed boundary method to deal with the stationary or even moving wall boundary 

conditions in the computational aeroacoustics.  

 Keywords: body force model, flow-induced noise, oscillating circular cylinder.   

 

1. Introduction 

Prediction for the flow-induced noise from moving solid boundary is a challenging but important 

issue in the low-level noise design of modern aircraft. In order to get a profound comprehension for 

the physical processes of sound generation and propagation, numerical methods, especially the 

computational aeroacoustics (CAA), have been widely used in the past. When combined with the 

direct noise computation or acoustic analogy method, CAA has been identified as a powerful tool in 

the noise predictions such as the jet noise [1] and the slat noise [2] in high lift devices.  

However, it’s usually difficult for CAA to deal with moving-boundary problems [3][4], such as 

fan noise, rotorcraft noise or vortex-induced vibration/noise. Due to the low dissipation and low 

dispersion requirements of the numerical schemes for CAA, two puzzles usually exist: the mostly 

used moving-grid technique in computational fluid dynamics (CFD), however, is difficult to be 

adopted in CAA due to the high demand for the computational grid; the real-time high-resolution 

interpolation is so complicated and time-consuming if the overset grid is used. Actually, the mov-

ing-boundary problem in CAA also refers to the fluid-structure interaction (FSI) problem [5], which 

is one of the classical problems in CFD community. Besides the moving-grid and overset grid tech-

niques in CFD community, the immersed boundary (IB) method is a promising method for FSI 
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problems and has been widely identified in incompressible [6] flows. Recently, Seo and Mittal [7] 

has developed a ghost-cell IB method to simulate the acoustic scattering and flow-induced noise 

problems. In 2012, Sun et al.
 
[8][9] developed a relevance matrix technique of IB method named 

“influence matrix method(IMM)” to accurately calculate the body force, which can be used to re-

place the hard or soft wall boundary conditions. IMM allows a big Courant-Friedrich-Lax (CFL) 

number due to the combination of the continuous and the discretized forcing methods.  

In this paper, a more general form of the IMM is derived to simulate the no-slip wall boundary 

conditions for the compressible Navier-Stokes (N-S) equations. In order to validate the developed 

IB method, direct noise computation is used to simulate the flow-induced noise with both stationary 

and moving solid boundaries. The paper structure is set up as follows. In Sec. 2, the computational 

models for the flow-induced noise problem are introduced. The body force model based on IMM is 

derived. Then the high order schemes and the nonlinear nonreflecting boundary conditions (NRBCs) 

are introduced. In Sec. 3, validations for the flow and radiated sound fields from a stationary circu-

lar cylinder are conducted to verify the computational models. In Sec. 4, the flow field around the 

harmonically oscillating circular cylinder and the radiated sound field are calculated by utilizing the 

compressible N-S solver, the influence of oscillating frequency on the vortex shedding and radiated 

sound are discussed.  

2. Computational models for the flow-induced noise simulation  

The computational models are established on the fixed Cartesian grid, as shown on Fig. 1(a),  to 

confirm the high-resolution grid for the CAA simulation. The sound generated by the FSI problem 

is modelled as the cylinder-spring system, as shown on Fig. 1(b).  

                         
(a) computational domain;    (b) schematic model. 

Figure 1: Computational domain and the schematic model of the flow-induced noise problem ( : the La-

grangian boundary domain; 1 : fluid domain; 2 : solid domain or extended fluid domain; F : the boundary 

force density; Ma : inflow Mach number, ef : the oscillating frequency; D: the characteristic length).  

2.1 Governing equations 

The flow-induced noise problem can be described by the compressible N-S equations. In compu-

tational coordinates, the governing equations (2-D) in conservative form can be written as  

 t x y  Q H G S ,   (1) 

where the conservative variables 
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T

J u v E   Q , where 
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with viscous stress terms written as 
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where 2 / 3  , p T  , and source terms can be written as 

 = 0, , ,0
T

x yJ f f   S ,   (6) 

where “ T ” represents transposition operation, p ,  ,T  and u , v  denote pressure, density, tempera-

ture and flow velocity components in the x  and y  directions,   is the viscosity coefficient, which 

can be calculated by the Surtherland’s formula.   is the second viscosity coefficient. x yf f f i j  is 

the body force density, S represents the source term. J  is the Jacobian determinant, and x , y  are 

the partial derivatives of the coordinate transformation. Due to the adoption of fixed Cartesian grid, 

y and x  are equal to zero. The length is nondimensionalized by the solid body characteristic 

length D , velocity by the inflow sound speed c , density by the inflow static density  , time t by 

/D c , pressure by 
2c   and viscosity coefficients by the incoming flow viscosity  , force by the 

combined variable 
2c D  . /Ma U c   is the Mach number of the incoming flow, and 

/Re U D    , 0.75Pr  . 1.4  .  

2.2 IB Method for the wall boundary conditions 

In 1972, Peskin [10] firstly constructed the numerical body force model for the FSI problem, 

based on the Hook’s law and generalized function, which is usually classified into the continuous 

forcing method of IB method. However, it is difficult to model the body force for most of problems 

especially when the immersed body is rigid. Owing to the simple interpolation operation for the 

continuous forcing method, Goldstein et al. [6] proposed the feedback forcing method, and Su et al. 

[11] constructed the relevance matrix of the body force and got a big CFL number. Sun et al. [8] 

derived the inviscid form of body force for the linearized Euler equations (LEEs). In the following, 

a more general form of IMM is derived for the compressible Navier-Stokes equations.  

The derivation processes can be divided into two steps: prediction and correction steps. In the 

prediction step, the body force xf  and yf  are set to zero. In physical coordinates, the semi-

discretized form of momentum equations can be denoted as 
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where P  and Q  denote the discretization forms of the spatial derivatives for the momentum equa-

tions in x and y directions, 
*( )u  and 

*( )v  denote temporary conservative variables in the 1n  

time step. Considering the body force, it is easy to get the exact conservative variables in the 1n  

time step in the discretized form as 

 

1

1

( ) ( )

( ) ( )

n n n

x

n n n

y

u u P f

v v Q f

 

 





   


  

.   (8) 

Then the body force can be calculated by subtracting Eq. (7) from Eq. (8) as 
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Based on the coupled equations in Eqs. (10) and (11) also adopted by Peskin [10], the Lagrangian 

variables and Eulerian variables can be connected by 

    ( ) d


 U X u x x X x ,   (10) 

      ds


 f x F X x X ,   (11) 

where ( , )x yx  denotes the Cartesian coordinates, X  is the coordinate vector of the immersed 

boundaries, ( , )x yU UU  is velocity of the immersed boundary points, ( , )x yF FF  denotes the 

Lagrangian boundary force density.  

Combining Eqs. (9) (10) with (11), it is easy to get the following equations as 
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Theoretically, the general equations for the boundary force ( , )x yF FF  have been obtained without 

other unknown variables. However, the approximate Dirac delta function in Ref. [10] should be 

adopted to eliminate the singularity. Then by adopting the Riemann sum in Eq. (12), the discretized 

form of Eq. (12) can be denoted as 

 ( ) /T Tt   U A F ,   (13) 

where ( ) /T t U  is the momentum variation due to the immersed boundary force. The elements 

of matrix A  can be expressed as  

    ,p q d q d p x y qA d d s 
 

     
 


x

x X x X ,   (14) 

where , 1,p q M ( M  is the discretized number for the immersed boundaries), d  is the approxi-

mate Dirac delta function, qs  denotes the arc length of the q -th immersed boundaries.  

Due to the compact support property for the approximate Dirac delta function, the coefficient ma-

trix A  is highly sparse and can be transformed into positive definite symmetric matrix, therefore 

two selectable methods can be developed to solve the Eq. (13), one is parallel Cholesky decomposi-

tion (PCD) for sparse coefficient matrix, the other is preconditioned conjugate gradient method 

(PCGM), which can be used to deal with the weakly ill-conditioned matrix.  

2.3 Numerical schemes and NRBCs 

In the computational model, the seven-points dispersion-relation-preserving (DRP) scheme [12] 

is adopted to discretize the spatial derivatives of the flux variables in the governing Eq. (1), 2N-

storage 5/6-stages low dissipation low dispersion Runge-Kutta (5/6 LDDRK ) time marching 

scheme [13] is adopted to discretize the time derivatives of the conservative variables. In the far-

field boundary, the nonlinear perfectly matched layer (PML) absorbing boundary conditions for the 

Euler equations [14] are adopted. In order to eliminate the spurious short waves near the wall 

boundary, the selective artificial filter [15] is used,  a small filter coefficient 0.03 is found suitable.  

3. Results and discussion  

In this section, the laminar flows around both the stationary and oscillating 2-D circular cylinder 

as shown on Fig. 1(b) are simulated. For the simulation parameters, 0.2Ma  , 150Re   for all 

the cases, which are same as the stationary case of Inoue et al. [16]. The lift coefficient, drag coeffi-

cient and pressure coefficient around the circular cylinder are defined as  

 0/L yC F F , 0/d xC F F , 2( ) / (1/ 2 )pC p p U    ,   (15) 
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where 2

0 1/ 2F U DL  , xF  and yF  are the lift and drag coefficients, and p  is the time-averaged 

pressure on the surface of the circular cylinder, 1L   for 2-D problems.  

3.1 Validation for the computational model 

For the validation experiments, a small computational domain [ 7,11] [ 7,7]    is selected to cal-

culate the flow field near the circular cylinder. It’s found that even the small computational domain 

can give a satisfactory result by utilizing the nonlinear PML NRBCs, and the numerical stability can 

be kept if the CFL number is smaller than 1.2 as shown on Fig. 2, which is excellent among most of 

the IB method. The grid refinement validations are done for the minimum grid sizes 

/180x y     , / 300x y      and / 450x y     , less than relative 0.5%  errors are 

caused by the grid size /180x y      for the lift and drag coefficients, so in the following simu-

lations, the grid size /180x y      near the solid wall and 0.8 for the CFL number are adopted.  

     
(a) ;            (b) .  

Figure 2: Instantaneous lift and drag coefficients and pressure coefficient distribution on the surface of the 

circular cylinder ((a) /180x y     , CFL = 0.8; (b) pressure coefficient on the radius 0.52pr  ).   

            
(a);               (b).  

Figure 3: Comparison for the sound field ((a): instantaneous sound pressure, t=1800; (b): the root mean 

square of sound pressure on the circle 75(1 cos )pr Ma   ).  

A large computational domain [ 100,100] [ 100,100]    is selected to calculate the radiated sound 

field, and a stretching factor 1.008 is adopted for the Cartesian grids in x and y directions. The root 

mean square of sound pressure is calculated on the circle 75(1 cos )pr Ma   , results are shown 

on Fig. 3. Good agreements are obtained both for the flow filed near the wall boundaries and the 

0 500 1000 1500

-0.5

0

0.5

1

1.5

t

C
L
 &

 C
d

 

 

A
(Cd)

 = 0.0553

A
(CL)

 = 0.5155C
L

C
d

180 230 280 330 360
-1.5

-1

-0.5

0

0.5

1

1.5



C
p

 

 

Inoue et al.

CFL = 0.5

CFL = 0.8

CFL = 1.2

  2e-05

  4e-05

  6e-05

  8e-05

  0.0001

30

210

60

240

90

270

120

300

150

330

180 0

 

 



P
rms

Inoue et al. 

Present result



ICSV24, London, 23-27 July 2017 
 

 

6  ICSV24, London, 23-27  July 2017 

radiated sound in the far field in the above simulations. It proves that the proposed IB method and 

computational model are capable of simulating the flow-induced noise problem.  

3.2 The radiated sound field for the harmonically oscillating circular cylinder  

The oscillating mode of the circular cylinder has a great influence on the vortex shedding and the 

radiated sound. In this part, the flow and sound fields for a harmonically oscillating circular cylin-

der are simultaneously simulated. The inflow Ma  and Re  are same as the above. The movement 

equation for the oscillating circular cylinder is  

 ( ) sin(2 )ey t A f t ,   (16) 

where A  is the oscillating amplitude, ef  is the oscillating frequency. 20%A D , (1.0 ~1.2)e of f  

( 0.0366of   is the natural vortex shedding frequency for the stationary circular cylinder).  

           
(a) LC  & t;        (b) dC  & t. 

Figure 4: Instantaneous lift and drag coefficients for different /e of f  ratio.  

      
(a) spectrum of the lift and drag coefficients;  (b) instantaneous vorticity contours, t = 1500.  

Figure 5: The spectrum of the lift and drag coefficients and the flow field near the moving walls.  

As shown on Fig. 4 and Fig. 5, the oscillation of the circular cylinder has the tendency to amplify 

the lift and drag fluctuating amplitudes. The fluctuating amplitudes highly depend on the oscillating 

frequency ratio. In Fig. 5(a), subharmonic components appears for the lift and drag coefficients, 
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which means that the vortex shedding presents an obvious nonlinear behaviour as shown on Fig. 

5(b).  

         
(a) instantaneous sound pressure: 75pr  ;        (b) frequency spectrum.  

Figure 6: The instantaneous sound pressure and the spectrum in the far field ( / 1.2e of f  ).  

In Fig. 6(a), the maximum sound pressure fluctuating amplitude appears in the 90  direction. In 

the 180  direction, an obvious “beat” phenomenon whose frequency is 0.01 appears. And we can 

see that the drag dipole dominates in the 180  direction, while lift dipole dominates in the others. 

The sound pressure directivities can be also obtained as Fig. 7.  

   

Figure 7: The root mean square of sound pressure on the circle 75(1 cos )pr Ma   (A1: stationary, A2:

/ 0.8e of f  , A3: / 1.0e of f  , A4: / 1.2e of f  ) .  

4. Conclusion 

In this paper, a flow-induced noise computational model is proposed. The wall boundary condi-

tion is replaced by the constructed body force model. Good agreements are obtained with the previ-

ous results both in the flow field near the wall and the sound pressure directivity for the stationary 

circular cylinder streaming. When the circular cylinder is harmonically oscillating, it’s found that 

the fluctuating amplitudes of the lift and drag coefficients are so greatly influenced that the sound 

pressure directivities for different /e of f  have big differences.  
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