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THE SYNTHESIS OF THE SOUND FIELD EXCITED 8Y A RIGID BODY OF
ARBITRARY SHAPE IN AIR WITH AN ARBITRARY DISTRIBUTION OF NORMAL
VELOCITIES BY SPHEHICAL SOUND FIELDS

I.. Cremer-

Tachnical University, Berlin

" To introduce my nomenclature and symbols | will start with the problem’of the simplest
idealised sound source, a sphere in Infinite, empty space. For this problem, the sound
pressure outside the sphare can always be described in terms ot a double sum of products
of three funclions. The first function, R say, depends only on the radial distance r from the
sphere's centra and the acoustic wavenumber k, in the combination (kr). The second

_function, & say, dapends on the angle of daclination 8, and the third function depends on

the azimuthal angle ¢. This last may be writlen as

b ()= cos(n(e-9) . | (1) -

where n denotes the number of node-lines in the ¢-direction. The function ©(8) is
characterised by values of two parameters: n, and the number (m say) of node-lines in the
8-diraction, whila the radial function R changes with m only. These products, which
describe what may be called tha m,n-modes making up the total sound field | call
"spherical sound fields".

- Summing aver them, we can exprass the actual sound pressure in the form

prdp=3S ;f_ For] R0 BB 00)] / R (kh) (@)

Since the modal terms are dimenslonless, their complex (and therefare underlined)
amplitudes are pressures as wall. It is sensibla.to normalise them by dividing each term by
Bunikh), so that they all describe pressures at the same valué r = h, which we may take to

be the radnus of the exciting sphere.

The dimensionless number kh characterlsés a similarity group. In aerodynamics we
are accustomed to characterise similar fields by such similarlty numbers — for example the
Reynolds number, which when small leads us to expect laminar flow, and when large,
turbulent flow. In the same sense here, small kh Impliss guasi-stationary, incomprassible
fields near the surface of the sphere, while large kh Implies waves of radiating character
whila still close 1o the sphere. To emphasise these general relationships, which hold also
for sources of any shape, allow ma 1o give kh a special name. Sinca this similarity
appearad first In the wave equation for pure tones, which is often called the Helmholiz
aquation, | call the ratio of a characteristic length to the wavalangth in any sound field a
*Helmholtz number® /1/. In this case | will apply that term to the number kh, by regarding
the perimater of 1he radiating sphere as a suitable characteristic length.
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If we set r=hin {2), we obtain

Pt =SS Bl . 2a)

Since r is constant, only the functions @, and @, appear here. These are both purely
real functions, although their amplifudes will in general be complex. Lord Rayleigh /2/
called them "spherical harmonics”; and therefore designated their products by Smn:

-

. Snn = @'"‘(1” ¢n“h .o L ' (3)
They shafé with other eigenfunctions the extraordinary: property of orthogonality:
Q= L o _ . e
SH\II Sm'ﬂ' dS o 3 m.n * m,n , - ; (4)

This property makes the analysis of a given distribution of a field quantity into its spherical
harmonic components very easy, since each coefficient may be calculated indspendently.
Multiplying both sides of equation (2a) by S.,(0,9) and integrating over the whole sphere
leaves just ona non-zero term from the double sum on the right-hand' side, so that the
amplitude Py may be deduced immediately: ‘ .

.. z , ’
I f(9.¢).sm'n'('3-‘f) dsg = f,.e..- ['Sm,n.('ﬁ-‘f)ds_ . (5)
5 s ‘ . '
We must now decide which field quantity we wish to regard as given. If we wara

dealing with the problem of a very thin spherical shell in water, perhaps pressure would be.
the appropriate quantity. However, | emphasised in the title that | am concerned here with
rigid bodies in air. For such bodies, the impedance of the bedy will be large in comparison
with that of the surrounding air, so that it is appropriaie to regard the normal velocity as
being given. We may readily relate the pressure terms appearing in (2) to the
corresponding terms In radial velocity: o K _ :

Pan = 3P Lrma RmCh)/ Ry (kR B )

and we can thus analyse v,(8.¢) into spherical harmonics.

Qur primary interest is in the sound pressure distribution at large distances, say over a
distant sphere of radius e. An imporiant property of all the functions B,.,, makes tha choice.
of an appropriate value of e simple. B, is so defined that each By, tends towards a pure
spherical wave when ke becomes large: ke .

2 ' ' e o
(ktY'>>4 ;3 Rm — —n - R ¢/
Only in this far field is it sensible to define — or measure — a directional characteristic
{(which could be expressed in its spherical harmonics). We would naturally exprass the
amplitudes of modes by partial pressures on that sphere r=8: . . :

f(e'.&"” = Zzlfem.usmn(ﬂ'(“ . | (8)
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From the relations given above, we could either calculate the direclional characteristic
for a givan radial velocity distribution, or, just as easily, the converse. Howsver, in practice
there is a great difference between thesa twa. The larger the value of m compared to the
Helmheltz number, the more rapidly do the functions B, and B’y increase towards the
sourca. Thus a corrugated distribution of y, on the source sphare may appear hardly at all
in the directional characleristic since the effect of the higher m values is relatively
attenuated as we move away from the source. This attenuation could be reliably predicted
without major problems of ill-conditioning. However, ta go in the opposite diraction and try
to deduce conditions at the source from the far-field pattern could involve serious problems
of this type, since very small components in the directional characteristic would have to
multiplied by very large faclors to find the distribution of v,. Fortunately, we are seldom
required to infer behaviour al source from far-field radiation patterns, whereas it is quite
frequently of interest to replace the laborious measurement of a directional characteristic
by the sensing of velocities on the source and the calculation of the directional
characteristic. For example, with large machinery thare is usually no possibility of
measuring at sufﬁcnenﬂy large distancas and in an anechoic room,

Here we can best make tha jump to consider sources of arbltrary shapa. For any finite
source, provided we are sufficiently far away from it, the field may be decomposed into a
univarsal function of distance as in (7}, multiplied by a function ¢f 8 and ¢ which can ba
analysed into spherical harmonics. In this case, however, not only must r be large in
comparison with wavelength A, giving what is usually called & "far” (in contrast to a “near”)
field, but it must also satisty’

T >> b . (9)

where b,,,, is the largest dimansian of the source in any direction. In my *Physics of the
violin" /3/ | called this a "distant” field, in contrast to the "neighibouring™ fisld, which exiends
from the source to approximately r=5bg,,. This neighbouring field could also be a near
field if the Helmholtz number is small, but if the Helmholiz number is large it may consist
largely of far field. On the other hand, it tha naighbouring field is an incompressible ons,
then that quality may persist for some way into the distant field. This possibility results in
the well-known fact that a concentrated volume flux of any kind tands towards a spherically-
symmetric distributed flux before this in turn produces a zero-order spherical wave. 1f the
compressible {far} field starts within the neighbouring field, the eventual spherical wave
will have more spherical-harmonic componants.

Lord Rayleigh has discussed this problem /2/, noling amgrdg other things the fact that,

ria
on grounds of symmetry, the sound field produced by any ro Ationa y:symmetric vibrating
body (in the far distant field) will consist only of 8,-functions of aven order if the motion is
symmetric with respect to the equator, or only of odd crders if the two halves vibrate in
opposite phases. Rayleigh was not able to give rules to determine the amplitudes in all
cases, and he was not concerned with the problem of extending the synthesis of spherical
fields 1o the whole space outside the source.

A
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Since the same directional characteristic can be produced by sources of different
shapes and appropriately dilferent velocily distributions, it is possible 1o compare each
source with a reference sphere of radius h which would produce the same characteristic.
In this spirit, Backhaus /4/ and more recently Weinreich /5/ have compared a body of such
a non-spherical shape as a violin with a monopaole, a dipole etc. | pretar to compare them
with reference spheres producing fields of order 0,1,2... Figure 1 shows the directional’
characteristics of a violin.at two different frequencles, in the plane of the bridge, as
measured by Meinel /6/. The dashed fine corrasponds to the lowast body resonanca,
which appeared at a frequency of 517 Hz. This corresponds 10 a wavelength in air of
&6 cm. The maximum width of the violin in the cross-direction is about 20 cm, and the
minimum is about 12 cm. Thesa values are not so small compared with the wavelength
as to make & zero-order charactaristic ingvitable, but in fact the deviation from a circle is
astonishingly small. This contrasts with the solid line, corresponding to the the f-hole or air .
resonance at the lower frequency of 290 Hz, which looks more like a suparpositicn of a

zero and a first order field.

So | felt confronted by the question /77 for a violin, or indeed for any rigid body of
arbitrary shape, does there exist a distribution of normal velocity, which we might denote
V(6,4), which praduces in the surrounding air a spharical wave field of the order m,n right
from the surface of the body? The answer was "yes", and the condition for the ¥-
distribution was so simple that | was at first in serious doubt as to whether it was really
sufficient. V is simply set equal 1o the velocity distribution corresponding to a spherical
sound field of order m.n produced by a sphere contained within the body of inferest. This
boundary condition uniquely determines a forced motion of the air, which has the same
prassures and tangential velocity components as the reference field. The tangential
components meet no constraint, ang on account of the impedance mismatch mentioned
above, the rigid source can easily provide these pressures.

Let us look for the most simple example of a non-spherical rigid body. We will naturally
choose ona with rotational symmetry and equatorial mirror-symmetry. By cutting a sphere .
of radius a with two parallel planes a distanca h either side of the equator we obtain a
family of bodies which includes the sphere in the limiting case h—a. In Fig. 2 the ratio h/a
is chosen to be 1/4. Wa can take a reference sphere which touches the twe planes at its
poles. We start with the zero-order spherical fisid, shown In Fig. 2a. For low Helmheltz
number, the normal velocity across the top plane decreases like ¢0s%9, and the back plane
has a mirror-image distribution. Around the curved sides, the normal velocity is small but
constant. Although the violin never vibrates with a "bell-shaped” velocity distribution quite
like this, it does execute breathing motions which are qualitatively similar, resulting trom
the lever action of the bridge and the asymmetric constraint of the soundpost. This results
in radiation at the lowest body resonance which approximaies a zero-order field, as we
have seen.
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Figure 2b shows, as the dashed line, the corresponding Y-distribulion for a first-order
field. Its dependence on 8 is a litlle more complicated, since the tangential components of
tha spharical field now contribute. However, the shape is still bell-like, the chigf difference
from the zero-order case being the sign change between lop and back plates. If we were
to superimpose both M-distributions with equal amplitudes, we would approximate a
source in which high surface velocities ara only found near the cantre of the top plate, the
back plate vibrating little. This corrasponds qualilatively to the motion at the air resonance
of a violin, with air flow in.and outthrough the f-holes. It thus explains qualitatively the
directional characteristic of this resonance seen in Fig. 1, which consists largsly of a
superposition of zero-order and first-order fields. These examples show how fruitful
spherical-tield synthesis can be, even for purely qualitative discussions. Qur example
series is completed, in Fig. 2c, with the ¥Y-dislribution for a first-order field in the transverse
directian, just to demonsirata that no difficulties arise in the construction of modes in which
n does not vanish.

Our aim is to develop a quantitative method for analysing arbitrary V-distributions at the
surface of an arbitrary source body in terms of spherical-field componants according to a
sum of the type

V3 d) = 35 Vig Qual 8.9 . (10)

Here we have introduced the dimensionless distribution functions Q, with maximum values
of unity since the reference sphere is inscribed within the body, which creale spherical-
harmonic figlds from an arbitrary source body shape. We need only consider the zero-
order field to see immadiately that Q, depends on frequency and muslt therefore in general
be complex. At large Helmholtz number (which we take lo be kh, where h is the radius ot
the reference sphere) the radial velocity decreases like 1/r and contains a phase delay.

As a preparatory study, however, we may restrict attention to low Helmhaltz numbers,
whan all the Q,,,, terms reprasent incompressible velocity fields and are thus real, like the
spherical harmonics. Wa must note an essentlal dilferance, though: these functions,
although real, are not in general orthogenal. Thus the integral corresponding to (5) will in
general produce on tha right-hand side a sum of terms containing all ¥,,,:

J y(*'(“gm'n' dS = Z Z .\./Mn jganm'n'dS . (1)
£ =

If wa truncate this sum by estimating a likely numbaer M of necessary spherical fields, we
obtain M equaticns for M unknowns, so that there will In general be a unique solution. We
then need to check convergence by repeating the calculation with increased M. In contrast
1o the spherical harmonics, whers the amplitudes already calculated are unchanged by
such an increase, we here have to allow for all the ¥, 10 change. Fortunately, this
influence seems empirically to ba.restricted 1o the neighbours of the new term, but this is
not guaranteed. '

Proc..O.A. Vol 10 Pan 2 (1988) 83




Proceedings of The Institute of Acoustics

SOUND FIELD SYNTHESIS

It would ba possible to extend the approach of equation (11), i.e. this system of M
equations, to complex functions Q. The approach | prefer, from my papar in Acustica 53,
1akes its cue from successful experience with problems involving forced vibrations in

tubes with difficult boundary conditions /1/. We first multiply ¥(0,4) an the lett-hand side of
(10) by the complex conjugate of the function [Lna{8.¢) occurring in the analogous
decomposition of the pressure distribution into spharical waves: :

Permt ) = S S PV Tnd 24, ' 12)

which can also be derived from the correspondlr_lg fisld excited by the referance sphere.

Wae thus write N . -
j _\,_/(19'.'-9)]'_1,.",..! s = Z Z L/mnj..@mnﬂm'n’ds ) (13)

S
This procedure has the advaniage that the coefficients ¥, appearing on tha right-

hand side can be interpreted as partial powers /8/. The real paris of tha diagonal
coelficients (in the sense that m=m’, N = n’} in the right-hand side matrix represent the

radiated powers P, of the m,n mode:
t 2 »
P, = & £¢ Vi Re{ [ QuallmmdS} . 14

When the Helmholiz number is small, pressure is almost In quadrature with velocity so that
these terms are small. Then, the ¥, may be calculated to a reasonable approximation by
ignoring radiation, although radiation obviously governs the directional characteristic and
is.our main topic. Since the radiated power for each mode m,n is that radiated by the
reference sphare, it is more easlly calculated by multiplying V2, found in this way by the
well-known radiation resistance for the corrasponding mode. '

The imaginary part of a given diagonal coefficlent corrasponds 1o the time derivative of
1ha kinetic energy due to the incompressible part of the velocity field: normalising again to
1/2 pcv2,,,, we have '

~200 Wan = £ ¢ Vinn lmf {-Q"“H; s} (15)

Thus for both real and imaginary pars of the diagonal coefficients, we have available a
check by a second method. The same Is irue of the imaginary parts of the coupling
coefficients. If we take the sum of a pair of coeflicients symmetrically-disposed about the
main diagonal of the maltrix, it can be expressed as the time derivative of the "mutual®
kinetic energy: '

£ Vo Vo] § Geallir dS T+ Vol Yo Inf { Quin Tl dS T =20| W 19
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The term "mulual energy” was first Introduced by Heaviside /8/. Il two field quantities
ara superimposed, for example velocities vy + v,, the square of the resulting field
consists of the sum v,2 + v,2, plus the mutual term 2vv,.. H the terms v,2 and v,2 satisfy
separate power-balance conditions, then the mutual terms must have their own powar
balance. Heaviside studied these balances back in 1892, and | became acquainted with
his results through Karl Willy Wagner /10/. Heaviside considered a system having a finite
number of degrees of freedom, acted on by two superimposed sets of forces: a set Ey
which produce velocities v, al masses my, and a set Ey, producing corresponding
velocities vy, The mutual powsr can then be split In two pars:

Z Fax Yk + Z: Foelax .

The studies of Heaviside, and later Wagner, show that for a system consisting entirely of
lumped masses, springs and linear viscous resistances, the two terms are equal. For the
special case in which we take only ong force of each sel to be non-zero, this result
becomes the well-known law of reciprocily. The Hsaviside-Wagner "law of mutual powers®
can be regarded as & generalisation, and it can aiso be applied in an integral form to
continuous systems such as the problem we are consideting. For our case, it resuils in the
stalement that the two terms on the left-hand side of (16) are equal. Since the two
quantities ¥ma¥ ma- and ¥ mn¥mn al6 complex conjugales, we can conclude that the
imaginary parts of the symmetric coefficients in our matrix must be equal;

lm{ .!.anﬂ'nfn' dS} = Im f ‘{l @m'n' H:n dS} . (17)

I now return to the simple example in Fig. 2, which allows this stalement to be checked
by a simple analytic calculation. In Table 1, the first column shows values of Jm{ !@.U:i?}
I{ [QT7S] (- 4xkh)

(=47 k)

Since ths integrals over top plate and back plale and aver the spherical zone are different,
we give their results separately in the first two rows. |t is not perhaps surprising, but
nevertheless interesting, that only the sum in the third row shows equality. The difference
in 1he conlributions of the plates and the zone resulis physically from the fact that Q,
contains only radial velocity components, while Q» conlains tangential components as
well. These latter cause some tangential power transport.  Finally, we should nota thal
these mutual coefficients vanish if h = a, i.e. when the body becomes a complete sphere,
since the Q and JI functions then become spherical harmenics. It follows from tha integrals
in (11) that only the .diagon'al coeflicients remain when the mode distribution functions are
orthogonal. .Conversely, orthogonality can always be interpreted physically as the
vanishing of mutual energies or powers.

and tha second column values of
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In any case, to proceed to higher Helmholtz numbers and mode numbers use must be
made of a computer. | am grateful to Manfred Heckl for encouraging a visiting Chinese
graduate student to undartake the necessary cormputer work, and | could not have found a
better collaborator than Maohui Wang /11/. Table 2 shows some of his results, in the form
of the real and imaginary parts of the coefficient matrix for orders 0,2,4 and 6, using as a
mode! equatorially-symmetric excitation of a cylinder of height 2h and diameter 2b, where
h/b was chosen to be 1/4, for the rather low Helmholtz number of 0.2. As would be
expected, the imaginary parts, representing kinetic energies, are always large compared
with the real parts, representing radiated powers. (Note that E-19 means 1019 Only the
00-term is comparable 1o its imaginary partner. .

It came as a surprise to me to find non-zero real parts to the coupling coefficients.
Since we have no viscous Josses In this model, radiation is the anly energy-loss
mechanism, and this crosses the surface of the source in any direction in the same way
that it crosses any sphere In the far distant field. | had thus concluded from the Heaviside- '
Wagner law of mutual powers that off-diagonal terms would have no real paris. -But they
appear in the results, and with oppesite signs for the corresponding pairs of coefficients.
They must thus describe not energy losses, but transfer of powser between one moda and -
another. For a system with lumped slements, this can be achieved by the idealised
transformer, a lever. In an asrodynamic continuum, a change in cross-section can work in
the same way. Applying the Heaviside analysis to these terms does indeed produce
Wang's statement /11/:

Re[ g Qm_f_r:,,-d.S'} = = RE{ égm'n'E;‘ dSP . (18)

In Table 2 the Helmholtz number of 0.2 is so small .that all real components are
insignificant compared with the corrasponding imaginary onas, so that the result is without
practical significance.

Table 3 shows the real and imaginary pars for the same cylinder shape, but with the
Heimholtz number increased 16-fold to 3.2. Hera the real parts are much bigger, and
indeed are larger than the imaginary parts in most cases. Without doubt the calculation
has become more difficult at this higher Halmhaltz number, but it would be wrong to
suppose that this tendency makes the synthesis for very high Helmholtz numbers
impossible. If they become sufficiently high that radiating waves stant directly from the
surface evarywhere, we could construct the field according tc geometric rules, as Morse

and Ingard /12 have done for the sphere.

Wang's choice for the V(8) distribution involved no motion of the ¢ylindrica!l shell, and
assumed the function cos%® over the top and back plates (in the sense of a breathing
mation), mada to vanish at the circular boundaries.. Figure 3 shows progressive stages of
the synthesis of this distribution, for the case h=b. In each of the three diagrams, tha
dashad line shows the assumed V(8). The solid lines show the sum of calculaled terms
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Yo Qo up 10 My = 2, 4, and 6 respeclively, calculated for the case of Helmholtz
number 0.2 (since otherwise we would have had to plot real and imaginary parts). It is
ramarkable how well the assumed shape is fitted with just the 2ero and second order
terms. Adding the term for m = 4 makes the fit if anything worse, and adding in m =6
makes it closer again, but scarcely any better than the case with two terms only. This sort
of behaviour is to ba expected in the absence of orihogonality.

Our main aim is 1o find the directional characteristic corresponding to & givan velocity
distribution, so we next Invesligate how this changes with mq,,,. Figures 4 to 7 each show
on tha left the shape c¢f the cylinder and assumed velacity aistribution, and on the right the
wavelength, or a part of ona, on the same scale. Below these appear four directional
characteristics corregnonding to partial sums with increasing numbears of tarms. [n each
case two characteristics are shown, with the lower order dotted and the higher sclid, so
that the change fror1 ona order to the next can be seen easily. The decreasing difference
between succeeding pairs shows the convergence of the approximation process. Since
the problem has rotational symmetry, it suffices 1o plot the right half only in each case,
while on tha left we plot for comparison (as a dashed ling) the famifiar approximation by a
zero-order chaiacteristic with the same 1otal volume flux. In the case of Fig. 4 (hb =1,
kh = 0.2) that simple approximation matches our results well and can be regarded as an
entirely adequate description. The same holds for Fig. § (h/b=1/4, kh=0.2). This
shows that an idealised breathing mode of an idealised violin exhibits an ideal zerg-order
characleristicl Since the situation is qualitatively comparable with the dashed line in
Fig. 1, we might perhaps be surprised that the violin does not exhibit an aven batter
approximation 1o the zero-ordar characteristic. This arises, no doul, from the fact that in
the real violin the part of the iop plate on the narrow side of the sound-post moves in the
opposite phasa to the rest.

The rasults for larger Helmholtz numbaer are mora interesting. Figure & shows resulls
for /b =1, kh = 3.2, and Fig. 7 shows h/b = 1/4 with the same Helmholtz number. In
both cases the resulting characteristics differ so much from the zero-order contribution that
it would have madse little sense t¢ supply the corresponding dashed-line comparison on
the lefi-hand side. As soon as the second-order partial is added in, the characteristic
. becomes quite similar to its final shape. In Fig. 6 this final shape is well approached by
adding in the fourth partial, whereas in Fig. 7 the process has not quite converged and the
next term, involving the tenth-order partial, would perhaps be desirable.

Shortly after Wang had finished his thesis, in which he also comparad calculated
characteristics with measured ones, a paper by Akyol /13/ appeared in Acustica, also
treating the problem of the sound field of a finite cylinder, He too considered the normal
velocity to be the given quantity, and ha used a method based on the Helmholtz integral, to
obtain an integral equation for ithe unknown pressura, which he then solved by splitting the
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cylinder into finite ring-elements. Their number m led to m equations for the m partial
amplitudes. The solid fine in Fig. 8 shows the pressure calculated in this way, plotted
against distance along a surface which runs from the middle of the top plate, parallel to the
top, round the corner, and down the side to the middle of tha cylindrical shell. He assumed
a ratio h/b = 2,'a Helmholtz number kh =2, and a velocity distribution which was
constant over the cylindrical shell and zero over the end-plates. The varicus marked
points were also given in Akyol's paper, following a careful study by him of the existing
literature /14/,/45//16//17/. These points represent studies all by different methods, and all
of them different from ours. Wang calculated answers to the same problem by our method
with Mga, = 14, and obtained the results plotted as the dashed line on Akyol's diagram.
Our results do not ditfer from the others any more than they differ from each other, and with
increased numbers of partial amplitudes they should coincide.

Of the various papers cited above, the most exciting and important for the purposes of
comparison with our method is ona by Williams, Parke, Moran and Sherman /18/, who also
made use of spherical fields. They too regarded normal valocity at the surface for each
mode as the self-evident boundary condition, although they were apparently interested in.
underwater sources. | was very surprised that their method had not found its way into the
international handbooks which | had consulted. The reason may have been their modest
titte, "Acoustic radiation from a finite cylinder™, which dig nct advertise the fact that they
were presenting a new general method which could be applied to sources of any shapa.
Their method differs from ours in one essential respect. Thair central equation for the
amplitudes of the modes was obtained from an integral of the product of V(9) and Q m (in
our notation), obtained via the well-known method of minimising the sum of squares of the
complex differences between ¥(8) and the sum over the saries V,.Q..(6).

Their method was actually described in terms of finding the velocity distribution. In Fig.
8, their corresponding pressure distribution (calculated by Wang, again with My, = 14) -
is plotted as a dash-dotted line. Since wa do not know the "true” curve, there is no way of
telling which of the two methods produces tha better fit. Howsver, we can compare the
velocity distributions calculated by the two methods with the assumad valocily distribution.
This comparison is shown in Fig. 9. We see that over the top plate our method gives lowar
values, and so comes closer to the assumed value of zero. However, over tha cylinder the
oscillations around the true constant value have a smaller amplitude as calculated by the
method of Williars et al. These oscillations are reminiscent of those in a Fourier analysis
of a rectangular pulse, whera oscillations appear with about the peariod of the first
neglected overione. Since here that period corresponds to only about a tenth of tha
wavelength, the oscillations will cause incompressible near-fields, but vitually no radiation
io tha far field. Thus for calculating directional characteristics, also done by Wang and
shown in Fig. 10, the two methods are scarcely distinguishable.
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SOUND FIELD SYNTHESIS

Im{ [Q,11,4S} Im( [Q,11,dS)
_4nkh _4nkh’
lates L ( ) l-(h)6 —(—)'—(—)
P 24 72\% 12a’ |287 8
1,hy* 1,h\8 1,h4 6
one | 5@ +5@ | 3@ 3
1
sm- | 27-5@ @ |7 3@

Table 1
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; _[Qmu;.ds for kh=02, h/b=1/4

4rh (kh)

REAL PART OF THE MATRIX COEFFICIENTS:

0.1923E+00 -0.1077E-03 -0.1441E-04 =0,292VE-05
0.1077E-03 0.7B867E~0Q6 0.4010E-07 0.1220E-07
0.1441E-04 ~0.4010E~-07 0,.2057E-12 0.1311E-13

0,292BE-05 -0.1220E-07 -0.1311E-13 0.1177E-19

o r m r Em e e PR R ER MY A as AR W R AR A Mm s Ah AR RA A M M R e A e M e M M Bm M o M M A e = v — W =

~0.5102E+00 -0,4128E-01 -0.6205E-02 -0.1100E-02
-0.412BE-01 ~0.2094E-01 ~0,7831E-02 -0.280BE-02
-0.62053E-02 -0.7831E-02 -0,5477E-02 -0.2932E-02 |

-0.1100E-02 -0.2608E-02 -0.2932E-02 -0,2304E-02

Table 2
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SOUND FIELD SYNTHESIS

1 IQ T dS for kh=32, hib=1/4

At (kh)

REAL PART OF THE MATRIX COEFFICIENTS:

--------------

0.284TE+00
0.2215E-01
0.8591E-02

0.1454E-02

P e e e

-0.4721E-01
0,1006E-01
0.2517E-02
0.1252E-03

92

- e e A e e s M M MR BN B B T TR e e o 4B e M ek e =

-0.2215E-01 -0,B8591E-02 -0.1454E-02
0.6470E-01 0,4607E-03 0.3150E-03
-0.,4607E-03 0.56304E-02 0.3876E-03

-0.3150E-03 -0.3876E-03 0.2770E-04

vl b e e e M e Em Em Em mr S AR BN Em R S SR MM AN MR m R e e mr e W e E M A

- w em e R EE ER mm W = e M m Mw M M R MM RS M e MR e M R e W R T W e o e

0,1006E-01 0.2517E-02 0,1252E-03

-0.1459E-01 -0.8075E-02 -0.2019E-02

~0.B8076E-0C2 -0,9187E-02 -0.4074E-02
-0,2019E-02 ~0,40T7T4E-02 -0.2B75E-02
Table3
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Fig. 1: Measured directional characteristic of a violin'in th

¢ bridge plane by Meinel
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Fig. 2: Distribution of the normal velogcity (dashed line) at the surface ot a sphere-zone
with top- and back-plated

a) for a zerc-order spharical field,

b} for a first-order spherical field in z- direction

.c) for a first order field in z-direction
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SOUND FIELD SYNTHESIS

M1

Re (v B)/v..,

' mmnlal*

Mpea=b

0° ' ' 900

Fig. 3; Approximation of the real par of Z¥m Qm (solid line) V to V() for increasing
Meay f07 @ cylinder (h/b = 1/1) and a Helmhcltz-number (kh = 0,2)
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Fig. 4. Directional charactenistics (@) of a cylindar, above, left, shape: h/b = 1/1, right,
wavelength in same scale: kh = 0,2, below charactaristicsip(6)|calculated for growing
Mmax, compared with approximation for zero order (dashed line)
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O

the sama as Fig. 4, but kh = 3,2; without approximation
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the same as Fig 4, but /b = 1/4, kh = 3,2; without approximation

Fig. 7-
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Fig. 8: Comparison of calculated pressure-distributions]p(s)jat the surface of a cylinder
{h/b = 2/1), when its shell vibrates with constant velocity and the end-plates are in rest,
solid line after Akyol, triangles after Shenderov, circles after Copley, squares after Fanlon,
crosses afetr Sandman, dashed line after Cremer/Wang and dashdotted line after
Williams et al. - over the distance s from plate-center till shall-middie along the surface.
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Fig. 9: Distribution of the normal velocily V(s) at the example described in Fig. 8; solid
ling: given V(s), dashed line: calculated after Cramer-Wang; dashdotted line: calculated
atter Williams et al ;
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Fig. 10: Calculated directional characteristicslp(a)jfor the example described in Fig. 8, lefi:
according to Williams et al.; right: according to Cremer-Wang.
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