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' To Introduce my nomenclature and symbols Iwill start with the problem‘oi the simplest
idealised sound source. a sphere In lniinite, empty space. For this problem. the sound

pressure outside the sphere can always be described In terms of a double sum ct products
of three iunctions. The first function, R say. depends only on the radial distance r irom the

sphere's centre and the acoustic wavenumber k. In the combination (kr). The second

.tunction. 9 say. depends on the angle of declinatlon e, and the third function depends on

the azimuthal angle o. This last may be written as

dawn “SUN—Am). m-

where n denotes the number of node-lines In the e-direction. The function 6(8) is

characterised by values oi two parameters: n, and the number (m say) of node-lines in the

e-directlon. while the radial function R changes with In only. These products. which

describe what may be called the rn,n-modes making up the total sound iieid I call

'spherical sound iieids". '

Summing over them. we can express the actual sound pressure in the iorm

f(r.19.r!)= : S; f__[ gunnemmonwl] /gnuu.) . (2)

Since the modal terms are dimensionless, their complex (and thereiore underlined)
amplitudes are pressures as well. It is sensibleto normalise them by dividing each term by
Bm(kh). so that they all describe pressures at the same value r = h, which we may take to

be the radius oi the exciting sphere.

The dimensionless number kh characterises a similarity group. In aerodynamics we
are accustomed to characterise similar iields by such similarity numbers — for example the

Reynolds number. which when small leads us to expect laminar flow, and when large.
turbulent ilow. In the same sense here, small kh implies quasi-stationary, incompressible
IieIds near the suriace oi the sphere, while large kh lmplies waves of radiating character
while still close to the sphere. To emphasise these general relationships, which hold also
for sources oi any shape. allow me to give kh a special name. Since this similarity
appeared tirst in the wave equation ior pure tones, which is often called the Helmholtz
equation, I call the ratio of a characteristic length to the wavelength in any soundiield a
"Helmholtz number' /1/. In this case i will apply that term to the number kh. by regarding
the perimeter oi the radiating sphere as a suitable characteristiclength.
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It we set r: h in (2). we obtain

three) = Z Z finemrmqantw . I " (gar:

Since r is constant. only the tunctions em and 0,, appear here. These are both purely

real functions. although their amplitudes will in general be complex. Lord Rayleigh /2/

called them “spherical harmonics"; and therelore designated their products by Sm“:

_S,“= 9...”) ¢nUD . - V V '. ,. (3)

They shaié'WithBther eigenfunctions the extraordinary property at orthogonality:

-— ' n .- ‘ . I ’ .

.SMS,,,.,I.AS — o , mm smut . «i

This properly makes the analysis at a given distribution of a Yield quantity'into its spherical

harmonic components very easy, since each‘ coeificie'nt may be calculated independently.

Multiplying both sides of equation (2a) by Sm.n.(9,¢) and integrating over the whole sphere

leaves just one non-zero term from the double sum on the right-hand side. so that the

amplitude Em-n- may be deduced immediately: '

Iftfi-«P).van-tfi.ll) d3 = 3:“,(19JJ’MS . ' _ (5)
s . '

We must now decide which field quantity we wish to regard as given. it we were

dealing with the problem oi a very thin spherical shell in water. perhaps pressure would be.

the appropriate quantity. However. I emphasised in the title that I am concerned here with

rigid bodies in air. For such bodies. the impedance of the body will be large in comparison

with that at the surrounding air. so that it is appropriate to regard the normal velocity as

being given. We may readily relate the pressure terms appearing in (2) to the

corresponding terms in radial velocity: v -

l

r... = -irc2m3m<W/Bi.ckw . 16>
and we can thus analyse mam into spherical harmonics. _

Our primary interest is in'the sound pressure distribution at large distances, say over a

distant sphere ot radius 9. An important property at all the tunctions makes the choice,

oi an appropriate value of e simple. E," is so defined that each Bm tends towards a pure

spherical wave when ke becomes large: _J.kr

2 e .- , -

(kr) ’7' i BM ; ' (pr) - V V I .30) .,

Only in this far field is it sensible to define —' or measure — a directional characteristic

(which could be expressed in its spherical harmonics). We woLIId naturally express the

amplitudes at modes by partial pressures on that sphere r: e: .. . -

freer) = Z: fem'nsmwwi) . (a)
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From the relations given above. we could either calculate the directional characteristic
for a given radial velocity distribution. or. just as easily. the converse. However, in practice
there is a great difference between these two. The larger the value of m compared to the
Helmholtz number, the more rapidly do the functions Em and fi'm increase towards the

source. Thus a corrugated distribution of x, on the source sphere may appear hardly at all

in the directional characteristic since the effect of the higher m values is relatively

attenuated as we move away from the source. Thisattenuation could be reliably predicted
without major problems of ill-conditioning. However. to go in the opposite direction and try

to deduce conditions at the source from the far-field pattern could involve serious problems
of this type. since very small components in the directional characteristic would haveto
multiplied by very large factors to find the distribution of 1,. Fortunately, we are seldom

required to inter behaviour at source from far-field radiation patterns. whereas it is quite
frequently of interest to replace the laborious measurement of a directional characteristic
by the sensing of velocities on the source and the calculation of the directional
characteristic. For example. with large machinery there is usually no possibility of

measuring at sufficiently large distances and in an anechoic room.

Here we can best make the jump to consider sources of arbitrary shape. For any finite
source. provided we are sufficiently far away from it. the field may be decomposed into a

universal function of distance as in (7). multiplied by afunction of e and e which can be

analysed into spherical harmonics. in this case. however. not only must r be large in

comparison with wavelength 1.. giving what is usually called a 'far' (in contrast to a 'near')

field. but it must also satisfy

r >> to...“ ' (9)

where pm. is the largest dimension of the source in any direction. in my "Physics of the
violin" [all called this a 'distant" field. in contrast to the 'nelghbouring' field, which extends
from the source to approximately r=5bmu. This neighbouring field could also be a near

tield if the Helmholtz number is small. but If the Helmholtz number is large it may consist
largely of far field. On the other hand. it the neighbouring field Is an lnoompressible one.
then that quality may persist for some way into the distant field. This possibility results in
the well-known fact that a concentrated volume flux of any kind lends towards a spherically-
symmetric distributed flux before this in turn produces a zero-order spherical wave. it the

compressible (far) field starts within the neighbouring field. the eventual spherical wave
will have more spherical-harmonic components. '

Lord Rayleigh has discussed this problem I21. noting amwgtw'things the fact that.
on grounds of symmetry, the sound field produced by any ro ationa yisymmelric vibrating

body (in the far distant field) will consist only of em-functions of even order if the motion is

symmetric with respect to the equator. or only of odd orders it the two halves vibrate in
opposite phases. Rayleigh was not able to give rules to determine the amplitudes in all

cases, and he was not concerned with the problem of extending the synthesis of spherical
fields to the whole space outside the source.
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Since the same directional characteristic can be produced by sources of different

shapes and appropriately different velocitydistributions. it is possible to compare each

source with a reference sphere of radius h Which would produce the same characteristic.

in this spirit. Backhaus [4/ and more recently Welnrelch l5! have compared a body oi such

a non—spherical shape as a violin with a monopole. a dipole etc. I prefer to compare them'

with reference spheres producing fields of order 0.1.2... Frgure 1 shows the directional'

characteristics of a violin-at two difierent frequencies. in the plane oi the bridge, as

measured by Meinef 16/. The dashed line corresponds to the lowest body resonance.

which appeared at a frequency of 517 Hz. This corresponds to a wavelength in air of

66 cm. The maximum width of the violin In the cross-direction is about 20 cm, and the

minimum is about 12 cm. These values are not so small compared with the wavelength

as to make a zero-order characteristic inevitable. but in fact the deviation from a circle is

astonishingly small. This contrasts with the solid line. corresponding to the the f-hole or air .

resonance at the lower frequency of 290 Hz. which looks more like a superposition of a

zero and a first order field.

So I felt confronted by the question m: for a violin. or indeed for any rigid body of

arbitrary shape. does there exist a distribution oi normal velocity, which we might denote

mom, which produces in the surrounding air a spherical Wave field of the order m.n right

from the surface of the body? The answer was "yes‘. and the condition for the y-

distributicn was so simple that l was at first In serious doubt as to .whether it was really

sufficient. 1 is simply set equal to the velocity distribution corresponding to a spherical

sound iieid of order m.n produced by a sphere contained within the body of Interest. This

boundary condition uniquely determines a forced motion of the air. which has the same

pressures and tangential velocity components as the reference field. The tangential

components meet no constraint. and on account of the Impedance mismatch mentioned

above. the rigid source then easily provide these pressures.

Let us look for the most simple example of a non-spherical rigid body. We will naturally

choose one with rotational symmetry and equatorial mirror-symmetry. By cutting a sphere .

of radius a with two parallel planes a distance h either side of the equator we obtain a

family of bodies which includes the sphere in the limiting case h—ra. in Fig. 2 the ratio We

is chosen to be 1/4. We can take a reierence sphere which touches the two planes at its

poles. We start with the zero-order spherical field, shown in Fig. 2a. For low Helmholtz

number. the normal velocity across the top plane decreases like c0539. and the back plane

has a mirror-image distribution, Around the curved sides. the normal velocity is small but

constant. Although the violin never vibrates with a 'bell-shaped' velocity distribution quite

like this. it does execute breathing motions which are qualitatively similar. resulting from

the lever action of the bridge and the asymmetric constraint of the soundpost. This results

in radiation at the lowest body resonance which approximates a zero-order field. as we

have seen.
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Figure 2b shows. as the dashed line, the corresponding M-distribulion for a first-order
field. Its dependence on e is a little more complicated, since the tangential components of
the spherical field now contribute. However. the shape is still bell-like. the chief difference
from the zero-order case being the sign change between top and back plates. If we were
to superimpose both M—distributions with equal amplitudes. we would approximate a
source in which high surface velocities are only found near the centre of the top plate, the
back plate vibrating little. This corresponds qualitatively to the motion at the air resonance
at a violin, with air flow in. and out'through the f-holes. it thus explains qualitatively the
directional characteristic of this resonance seen in Fig. 1. which consists largely of a
superposition of zero-order and first-order fields. These examples show how fruitful
spherical-field synthesis can be. even for purely qualitative discussions. Our example
series is completed, in Fig. 2c. with the y-dislribution for a first-order field in the transverse
direction. just to demonstrate that no difficulties arise in the construction of modes in which
n does not vanish.

Our aim is to develop a quantitative method for analysing arbitrary M-distributions at the
surface of an arbitrary source body in terms of spherical-field components according to a
sum of the type

yum) = Z: gangmmnh . (10)
Here we have introduced the dimensionless distribution functions Q, with maximum values
of unity since the reference sphere Is inscribed within the body. which create spherical-
harmonic fields from an arbitrary source body shape. We need only consider the zero-
order field to see immediately that 9,, depends on frequency and must therefore in general

be complex, At large Helmholtz number (which we take to be kh. where h is the radius of

the reference sphere) the radial velocity decreases like 1/r and contains a phase delay.

As a preparatory study, however, we may restrict attention to low Helmholtz numbers,

when all the 9;," terms represent incompressible velocity fields and are thus real, like the

spherical harmonics. We must note an essential difference. though: these functions.
although real, are not in general orthogonal. Thus the integral corresponding to (5) will in
general produce on the right-hand side a sum of terms cenlaining all Ln};

1: y(_§l¢)Qm'n' = Z Z Mm. jganM'n'dS . (11)

If we truncate this sum by estimating a likely number M of necessary spherical fields, we
obtain M equations for M unknowns; so 'that there will in general be a unique solution. We
then need to check convergence by repeating the calculation with increased M. In contrast

to the spherical harmonics. where the amplitudes already calculated are unchanged by
such an increase, we here have to allow for all the 1m to change. Fortunately. this

influence seems empirically to berestricted to the neighbours of the new lerm, but this is

not guaranteed.
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It would be possible to extend the approach oi equation (11), Le. this system at M

equations. to complex functions 9, The approach I preter. trom my paper in Acustica 55,.

takes its cue trom successiul experience with problems involving forced vibrations in

tubes with difficult boundary conditions 11/. We first multiply 1(6)») on the left-hand side of

(10) by the complex conjugate of the function n...(e.¢) occurring in the analogous

decomposition ot the pressure distribution into spherical waves:

frail-P): zZficyMfln..(19-.4), ' (12)

which can also be derived trom the corresponding field excited by the reterenoe sphere.

Wethuswrite * . at

J ywviflmvnds = Z Z yml emnonlds , .13,
S

This procedure has the advantage that the coetficients M..." appearing on the right-

hand side can be Interpreted as partial powers [8]. The real parts ot the diagonal

coeiticients (in the sense that m = m'. n = n‘) in the right-hand side matrix represent the

radiated powers P"... at the m.n mode:
i

Pmn = {Eye Vin: Re? i; anU'flndS} . (14)

When the Helmholtz number is small. pressure is almost in quadrature with velocity so that

these terms are small. Then. the 1"... may be calculated to a reasonable approximation by

ignoring radiation. although radiation obviously governs the directional characteristic and

is-our main topic. Since the radiated power for each mode m.n Is that radiated by the

reference sphere, it is more easily calculated by multiplying V2..." tound in this way by the

well-known radiation resistance tor the corresponding mode. '

The imaginary part oi a given diagonal coefficient corresponds to the time derivative of

the kinetic energy due to the incompressible pan of the velocity field: normallsing again to

1/2 pcVzmn. we have '

“20.7 W," = Jifc lmi (15)

Thus for both real and imaginary parts oi the diagonal coeiticients. we have available a

check by a second method. The same is two oi the imaginary pans oi the coupling

coeiticients. Ii we take the sum of a pair of coeiticients symmetrically-disposed about the

main diagonal of the matrix. it can be expressed as the time derivative oi the 'mutual'

kinetic energy:

£514". ymfn'lflii SI Eli-.3»;- +£¢y~t Kathiggfin-DM: '=.2.o| wm_.l,l('15)
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The term "mutual energy“ was first introduced by Heaviside IE]. it two field quantities

are superimposed. tor' example velocities v... + v... the square of the resulting tieid

consists ot the sum v...2 + vnz. plus the mutual term vav". if the terms v...2 and v": satisfy
separate power-balance conditions. then the mutual terms must have their own power

balance. Heaviside studied these balances back in 1892, and I became acquainted with

his results through Karl Willy Wagner I10]. Heaviside considered a system having a finite

number of degrees of lreedom, acted on by two superimposed sets at lorces: a set E...

which produce velocities 1“ at masses m... and a set Ebk producing corresponding

velocities 34,... The mutual power can then be split in two parts:

2: Eek W: + Z Ebkyak .

The studies of Heaviside. and later Wagner. show that for a system consisting entirely of

lumped masses. springs and linear viscous resistances. the two terms are equal. For the

special case in which we take only one lorce ol each set to be non-zero. this result

becomes the well-known law oi reciprocity. The Heaviside-Wagner "law of mutual powers'

can be regarded as a generalisation. and it can also be applied in an integral form to

continuous systems such as the problem we are considering. For our case. it results in the

statement that the two terms on the left-hand side of (16) are equal. Since the two

quantities gmny'm-n- and x'mnxm.n. are complex conjugates. we can conclude that the

imaginary parts oi the symmetric coetficients in our matrix must be equal:

lmf Lgmnflmfn'dS} = Imf £Qm'n'fliLIdS} , (17)
i now return to the simple example in Fig. 2. which allows this statement to be checked

by a simple analy1ic calculation. In Table 1. the lirst column shows values at ]m{ £9333}

Inf £9433} ' (— mar)
( -4-n kw)

Since the integrals over top plate and back plate and over the spherical zone are ditferent.

we give their results separately in the lirst two rows. It is not perhaps surprising. but

nevenheless interesting. that only the sum in the third row shows equality. The ditlerence

in the contributions of the plates and the zone results physically trom the tact that 90

contains only radial velocity components. while .02 contains tangential components as

well. These latter cause some tangential power transpon. Finally, we should note that

these mutual coellicients vanish it h = a. is. when the body becomes a complete sphere,

since the Q. and [1 functions then become spherical harmonics. It lollows lrom the integrals
in (11) that only the diagonal coetlicients remain when the mode distribution functions. are

orthogonal. .Conversely. orthogonality can always be interpreted physically as the

vanishing ot mutual energies or powers.

and the second column values of
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In any case, to proceed to higher Helmholtz numbers and mode numbers use must be

made of a computer. I am grateful to Manfred Heckl for encouraging a visiting Chinese

graduate student to undertake the necessary computer work. and I could not have found a

better collaborator than Maohui Wang /11I. Table 2 shOWS some of his results, in the form

of the real and imaginary parts of the coefficient matrix for orders 0,2,4 and 6, using as a

model equatorially-symmetric excitation of a cylinder of height 2h and'diameter 2b, where

h/b was chosen to be 1/4, for the ,rather low Helmholtz number of 0.2. As would be

expected, the imaginary parts. representing kinetic energies. are always large compared

with the real parts. representing radiated powers. (Note that E-19 means 10"°.) Only the

ooaterm is comparable to its imaginary partner.

It came as a surprise to me to find non-zero real pans to the coupling coefficients.

Since we have no viscous losses in this model. radiation is the only energy-loss

mechanism, and this crosses the surface oi the source In any direction in the same way

that it crosses any sphere in the far distant field. I had thus concluded from the Heaviside-

Wagner law of mutual powers that oft-diagonal terms would have no real parts. 'But they

appear in the results, and with opposite signs forthe corresponding pairs of coefficients.

They must thus describe not energy losses. but transfer of power between one mode and -

another. For a system with lumped elements. this can be achieved by the idealised

transformer, a lever. In an aerodynamic continuum, a change in cross-section can work in

the same way. Applying the Heaviside analysis to these terms does Indeed produce

Wang‘s statement /11/:

Rel ; QMHJn-O'S} = - Rel ggnvanJJ d3}, (is)
in Table 2 the Helmholtz number of 0.2 Is so small-that all real components are

insignificant compared with the corresponding imaginary ones. so that the result is without

practical significance.

Table 3 shows the real and imaginary parts for the same cylinder shape. but with the

Helmholtz number increased 16-fold to 3.2. Here the real parts are much bigger, and

indeed are larger than the imaginary parts in most cases. Without doubt the calculation

has become more difficult at thls higher Helmholtz number, but It would be wrong to

suppose that this tendency makes the synthesis for very high Helmholtz numbers

impossible. If they become sufficiently high that radiating waves start directly from the

surface everywhere, we could construct the field according to geometric rules, as Morse

and lngard I121 have done for the sphere.

Wang‘s choice for the V(e) distribution involved no motion of the cylindrical shell, and

assumed the function cosze over the top and back plates (in the sense of a breathing

motion), made to vanish at the circular boundaries; Figure, 3 shows progressive stages of

the synthesis of this distribution. for the case h = b. In each of the three diagrams, the

dashed line shows the assumed We). The solid lines show the sum of calculated terms

as Proc.l.O.A. Vol to Part 2 (1 gas)
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34.9... up to mm“ =2. 4. and 6 respectively. calculated for the case of Helmholtz

number 0.2 (since otherwise we would have had to plot real and imaginary parts). It is

remarkable how well the assumed shape is fitted with just the zero and second order

terms. Adding the term tor m = 4 makes the fit if anything worse, and adding in m = 6
makes it closer again. but scarcely any better than the case with two terms only. This sort

of behaviour is to be expected in the absence of orthogonality.

Our main aim is to find the directional characteristic corresponding to a given velocity

distribution. so we next investigate how this changes with mm“. Figures 4 to 7 each show

on the left the shape of the cylinder and assumed velocity distribution, and on the right the
wavelength, or a pan of one. on the same scale. Below these appear four directional

characteristics corresponding to partial sums with increasing numbers of terms. In each

case two characteristics are shown. with the lower order dotted and the higher solid. so
that the change from one order to the next can be seen easily. The decreasing difference

between succeeding pairs shows the convergence of the approximation process. Since

the problem has rotational symmetry. it suffices to plot the right half only in each case.
while on the left we plot for comparison (as a dashed line) the familiar approximation by a

zero-order characteristic with the same total volume flux. In the case of Fig. 4 (th = 1.
kh = 0.2) that simple approximation matches our results well and can be regarded as an

entirely adequate description. The same holds for Fig. 5 (h/b=1/4. kh = 0.2). This

shows that an idealised breathing mode of an idealised violin exhibits an ideal zero-order

characteristic! Since the situation is qualitatively comparable with the dashed line in

Fig. 1. we might perhaps be surprised that the violin does not exhibit an even better

approximation to the zero-order characteristic. This arises. no doubt. from the tact that in
the real violin the part of the top plate on the narrow side of the sound-post moves in the

opposite phase to the rest.

The results for larger Helmholtz number are more interesting. Figure 6 shows results
tor Nb: 1. kh =32. and Fig. 7 shows h/b= 1/4 with the same Helmholtz number. In

both cases the resulting characteristics differ so much from the zero-order contribution that

it would have made little sense to supply the corresponding dashed-line comparison on

the left-hand side. As soon as the second-order partial is added in. the characteristic

becomes quite similar to its final shape. In Fig. 6 this final shape is well approached by

adding in the fourth partial, whereas in Fig. 7 the process has not quite converged and the

next term. involving the tenth-order partial. would perhaps be desirable.

Shortly after Wang had finished his thesis. in which he also compared calculated

characteristics with measured ones. a paper by Akyol /13/ appeared in Acustica. also

treating the problem of the sound field of a finite cylinder. He too considered the normal

velocity to be the given quantity. and he used a method based on the Helmholtz integral. to

obtain an integral equation for the unknown pressure. which he then solved by splitting the
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cylinder into iinite ring—elements. Their number m led to m equations ior the in partial

amplitudes. The solid line in Fig. 5 shows the pressure calculated in this way. plotted

against distance along a suriace which runs irom the middle of the top plate. parallel to the

top. round the corner. and down the side to the middle oi the cylindrical shell. He assumed

a ratio h/b=2.'a Helmholtz number kh=2. and a velocity distribution which was

constant over the cylindrical shell and zero over the end-plates. The various marked

points were also given in Akyol's paper. following a careful study by him of the existing

literature /14/./15/./16/./17/. These points represent studies all by different methods. and all

oi them ditterent from ours. Wang calculated answers to the same problem by our method

with mmax = 14. and obtained the results plotted as the dashed line on Akyol's diagram.

Our results do not diiter irom the others any more than they diiter irom each other, and with

increased numbers oi partial amplitudes they should coincide.

Of the various papers cited above. the most exciting and important for the purposes at

comparison with our method is one by Williams. Parke. Moran and Sherman I18], who also

made use of spherical fields. They too regarded normal velocity at the suriace ior each

mode as the self-evident boundary condition. although they were apparently interested in

underwater sources. l was very surprised that their method had not tound its way into the

international handbooks which I had consulted. The reason may have been their modest

title. "Acoustic radiation irom a iinite cylinder“. which did not advertise the iact that they

were presenting a new general method which could be applied to sources or any shape.

Their method ditiers from ours in one essential respect. Their central equation for the

amplitudes at the modes was obtained trom an integral ot the product oi 1(8) and 9'... (in

our notation). obtained via the well-known method of minimising the sum oi squares oi the

complex ditterences between 1(9) and the sum over the series MAO).

Their method was actually described in terms oi finding the velocity distribution. In Fig.

8. their corresponding pressure distribution (calculated by Wang, again with mmx = 14) -

is plotted as a dash-dotted line. Since we do not know the "true' Curve. there is no way of

telling which of the two methods produces the better lit. However. we can compare the

velocity distributions calculated by the two methods with the aSSUmed velocity distribution.

This comparison is shown in Fig. 9. We see that over the top plate our method gives lower

values. and so comes closer to the assumed value oi zero. However. overthe cylinder the

oscillations around the true constant value have asmaller amplitude as calculated by the

method of Williams at al. These oscillations are reminiscent of those in a Fourier analysis

oi a rectangular pulse. where oscillations appear with about the period oi the iirst

neglected overtone. Since here that period corresponds to only about a tenth oi the

wavelength, the oscillations will cause incompressible near-fields. but vinualiy no radiation

to the tar lield. Thus ior calculating directional characteristics. also done by Wang and

shown in Fig. 10. the two methods are scarcely distinguishable.
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; IQmfl;.dS for kh‘= 0.2, h/b=1/4
41th(kh)

REAL PART OF THE MATRIX COEFFICIENTS:

0.1923590!) -0.1077E-03 -0.1441E-04 -O.2927E‘05

0.1077E-03 0.7967EPOS 0.4010E-07 0.1220E-07

0.1441E-04 -0.4010E-07 0.2057E-12 0.1311E-13

0.2928E-05 -O.1220E-07 -O.1311E-13 0.1177E-19

-0.5102E¢00 ’0.4123E-01 -0.6205E-02 ~0.1100E-02

-0.4128€-01 -O.2094E-01 -0.7831E-02 -0.2608E-02

-0.6205E-02 -0.7831E~O2 -0.5477E-02 -0.2932E-02

-0.1100E-02 -0.2608E-02 -0.2932E-02 -0.2304E-02
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REAL PART OF THE MATRIX COEFFICIENTS:

0.2847E000 'O.2215E-01 -0.8591E-02 -0.145‘E-02

0.2215E-01 0.6470E-01 0.4607E-03 0.3150E-03

0.8591E-02 -0.4607E-03 0.6304E-02 0.38765-03

0.14545‘02 -0.3150E-03 -O.3B76E-03 0.27705-04

-O.4721E-01 0.1006E-01 0.2517E-02 0.1252E-03

0.10065-01 -0.1459E-01 -0.BO?6E-02 -0.2019E-02

0.2517E-O2 -O.8076E-02 —0.9197E-02 -0.4074E’02

0.12526-03 -0.2019E-02 -0.4074E-02 -O.2875E-02
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Fig. 1: Measured directional characteristic of a violin in the bridge plane by Meinel
(19:37). Solid line 290Hz. dashed line 517Hz.  
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Fig. 9: Distribution 01 the normal velocity V(s) at the example described in Fig. 8; solid
line: given V(s). dashed line: calculated afier Cremer-Wang; dashdolled line: calculated
alter Williams et al.;  
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Fig. 10: Calculated directional characteristicslmemor the example described in Fig. 8; left:

according to VWIllams el al.; right: according to Cremer—Wang.
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