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1. INTRODUCTION

Propagation phenomena play an important role in the dynamic behaviour of large complex structures.
In many physical situations, vibrations transmitted along a structural framework from a remote part ofa structure or madrine,can muse undesired vibration and sound radiation far away from the excitationarea. Very often, the mechanical energy is transferred by straight, weakly damped structural elements ofconstant crossrsect-ion, which act as onedimensional waveguides. Their dynamic properties, described
by dispersion curves, are most often evaluated using one of the beam theoris (Euler-Bemoulli, Timo-
shenlto, etc). The most important hypothesis of all the beam theories is that the cross-section stays un-
defonned, while undergoing vibrational movement. This hypothesis is valid at low frequencies and for
compact cross-sections (large ratio of area and moment of inertia). However, where thin-walled beams
are contemed, even a relatively low frequency excitation can produce transfer of mechanical energy by
propagating waves associated with deformed cross~section modes. The analytical methods applicable
to such deformedMon modes are limited to simple cuss-section geometry (thin-walled drcular
cylindril shell, plate strip, etc). The paper deals with a finite element method for the computation of
the propagational wavenumbers and modes of a thin-walled beam (waveguide). The method is well
suited to the analysis of both undeformed and deformed cross-section modal shapes. The cross-section
of the beam is modelled by using flat, thin-shell finite elements with four degrees of freedom per node.
Element have both the flexural and the membrane stiffness and inertial properties.

2. VIRTUAL WORK FORMULATION

The formulation of equations of motion is based on the virtual work principle In wiew of the problem
considered, a specific displacement field with, y, 1,!) of the following type will be investigated:

fir(:.y.z,t) = ii(y‘z)e—jil2iwl
(I)

A point of an elastic body defined with coordinats z, y and x undergoes the steady-state harmonic
motion with frequency w, Eqfl). The elastic waves travel in the a direction with the wavenumber 7:,
while the spatial function 6,-(y, :) describes the motion of the z — y plane (Le. the plane perpendicular to
the direction in wich the wave propagates), Kolsky (I). The corresponding stress a,,(:, y, z,t) and strain
5;,- (z, y, 2,1) fields read:

 

iii-(2.14.2.0: -~(v. z,i)e"'“e"”' (2...)

5;](2, y,z.t) = 5"“, z, k)£"i’ei”' (2.6)

These are related through the constitutive relationship 5,, = ENE“, where 5;“, is the elasticity temor
Dimlnnint and Rayer (21.
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The imaginary unit is denoted by j = \/—1, while complex quantities have a "tilde" sign (.1). Time is

denoted by 1, while 2, y and z are the spatial coordinates.

The virtual work equation for such a waveguide leads:

[0 [a.-,-(r, z. mag-(v. 2a) — u’po, vlir(y.z)6“‘.’(v. alum = o (a)

where p(z, y)is the mass density. Virtual quantities (displacement and deformations) are denoted by

6 while ' denotes a complex conjugate. It should be noted that the integration is carried out over the

two-dimensional domain only, while the spatial coordinate a, wich coincides with the direction of prop-

agation, is cancelled out of the integral. in the same way as the time dependency: Sirnilary, the mass

density is also a function of only two spatial coordinates, beause the crowsection is assumed to be

constant along the waveguide. The first term in the equation. corresponding to the potential (elastic

deformation) energy, depends on the wavenumber is while the second term, which corresponds to the

kinetic energy, has no such dependence.

The general procedure for formulating finite element equations from the virtual work pfindple is well

known, Zimkiewicz l3], and is only briefly described here. The finite element formulation used here

seeks to find the displacement field r‘r.-(y, z) and the scalar i which satisfy the above virtual work equa-

tion. The finite element equations are obtained by discretizing the domain n into elements and ap-

proximating the displacement distribution within each element. For an arbitrary set of values of virtual

displacements, this procedure then leads to a complex set of linear algebraic equations of the form.

(than -w’[M]){l7) = o m

where [R(k)] is an analogon of a stiffnes matrix, which corresponds to the elastic energy in the system.

[M] is an analogon of a mass matrix. which accounts tor the influence of the inertial forces, and {U}

is a displacement vector. The stiffness matrix [51.2)] depends on the wavenumber k. The numerical

problem here consists in finding the set of generally complex-valued scalars EhI-(g, ,, and the set

of corresponding complex vectors (0, ), (0,), ...{(~l.-), for a given excitation frequency a. II the scalar

parameters obtained are purely real, the corresponding letors are real, too. In such a case, the real

scalars are the wavenumbers of propagating wave fields 5;, while the corresponding real vectors (0;)

describe the modes of the cuss section of the waveguide. The complex solutions {or the wavenumber

correspond to the exponentially decaying near fields, which generally do not tramport any appreciable

mechanical energy, unlss the length of the waveguide is small or the frequency low.

 

3. THIN-SHELL FINITE ELEMBITS FOR ONE-DIMENSIONAL PROPAGATION

The geometry of the thin-shell propagative element ls fully defined by two nodes, denoted by l and 2,

and its thickness In, Fig.1. Within the y — 2 plane the motion of the cross-section can be described by real

interpolation functions. Thin-shell flat elements have {our degrees of freedom [or a node n: the three

displacemens in, 6.. and IE" in the three direction of the local coordinate axes and the rotation 5,. about

the direction of propagation (the z-axis). The global coordinate system is chosen so that the global X

axis is parallel with the local z axes of the elements. Consequently the local y — : plane is parallel with

the global Y — 2 plane of an element assembly, Fig.1.
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Fist 1. Thin-she" finite element a] cross-section for analysis a] propagation

The displacement field for the element should now be specified. Strains in the direction normal to the
midvsurface will be assumed to be negligible according to Kirchhoff’s hypothesis, and the displacement
throughout the element, fi(z, y), 5(2, y) and 12-(2, y), will then be taken to be uniquely defined bythree

Cartesian components of the displacement, a." 6,, and II)" and of the rotation about the local :-axis 6,, of

the midsurface nodes 1:, (n = 1,2). In order to be consistent with the shell assumptions, rotation about
the local z axis is not taken as a degree of freedom, while rotation about the local )1 axis is an unknown

quantity defined by the wavenumber ;- for a given wave amplitude. As has already been mentioned, the
membrane displacements, a(:, y), r‘v(x, y) and the transversal deflection, 62(2, y) are treated separately.
Bch of these depends only on conesponding nodal degrees of freedom: the in‘plane or membrane
displacement fields, 12(2, y), r7(z, y), involve nodal displacements a" and it... while the lateral deflection,

u‘;(:, 1]), involves the nodal degrees of freedom conesponding to the flexiom 111,, and 5,, . ln—plane displace-

ments vary linearly within the local y axis, which assures continuity of displacements in the nodes or

only 0° continuity. To be consistent with Kirchhoft’s thin shell hypothesis, the lateral deflections must be

interpolated with the C‘ continuity, or the continuity of the displacement and its first derivative, within
the local y-axis. The Herrnite’s polynomes, or so called "static beam functions" can accomplish the latter

requirements, Bntax and G. Dhnn Hi. The propagativc nature of the displacement field in the a direction

is generated by multiplying the interpolation functions in the y direction by a complex exponential 2—1“.
To assure the quadrature between two in—plane displacements, the displacement component r'r(z, y) is
multiplied by the imaginary unit j,

2

t't(z,y) = 12-1“ 2 N,.(y)a,. (5.o)
n=l

u I

i(z,y) = r!“ E N,.(y)a,. (5.»)
=|

2 2 _

my) = e-I‘" Z Haw-in +c-ii' 2: atom or)
n=| n:l

For thin shells, the transverse shear strains, and therefore the transverse shear strain energy are negligible
compared with the bending and membrane energy. The stiffness and mass matrices involve integrals
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over the length i of the element, which are generally of the form:

[i601=[I§'(K)]TID][5(~)ld= ; [ml= llil'i‘l’hpiilldz tamer)
where [l§(i:)] and [H] relate the deformations and the displacements within the element to the nodal
displacements {a}, p is the mass density, It is the thickns o! the element and [D] is the elasticity matrix.

The elementary matricfi [[300]. [H] are complex-valued matrices while the element mass matrix [m] is a
real-valued matrix The matirial losses are taken to be negligible. which results inreal-valued elasticity

matrth [D]4 It comes out that the complex stiffnes matrix [5:02)] could be written in a lorm of a matrix
polynomial, as follows.

[Hill = PM + i’ikzl + kiln] + [in] (7)
where [in]. {h}, [h] and [h] are real-valued submatrices. Thus, the complex stiffness matrix becomes
complex only when the wavenumber F: is also complex-valued. The submatrias [kg] and [En] involve
the potential energies resulting from both the membrane and the bending of elastic deformations, while

[h] corresponds only to bending and [h] only to membrane deformation energy. The stiffness matrices
and the mass matrix of the element must be transformed to the global coordinate system, and assembled
in order to obtain global stiffness matrices [K.], [Kg], {KI} and [K0] and a global mas matrix [M]. It
should be noted that the transformation of the elementary matrices involves only a two-by—two matrix
of direction cosines between the y, z and Y, Z axes, since the z and X axes are parallel.

L EQUATIONS OF MOTION 0F ASSEMBLED FEM MODEL

The equationsof ntotion ofan asembly of finite elementsdescribed previously takes the following form.

(rum minim.“ [Kai -w’iMl)iU) = (0) (a)
where for a given excitation frequency w, R is the wavenumber, and (U) is an unknown eigenvec-
tor dscribing the corresponding mode. Generally, both of these quantities are complex. 'nre real-
valued wavenumbers characterize the propagative displacement field, which transmits mechanial en-

ergy within the waveguide. The conesponding modes are also real.

To solve £418) we must transformeit in a more appropriate form. The procedure starts with theinversion

of that part of 54118), which is not dependant on the wavenumber, ([Ku] — u’[M]). For some excitation

endes w’ = n}. the matrix tobe inverted is singular. These irequendes, which are called cut-on or
critial frequendes, can be computed by solving the simple eigenvalue problem ([Ko] — n'[M]){U) =

{0). Le by letting r: = 0 in F418). Since the part of matrix equation to be inverted is very ill-conditioned
in the vicinity of critial frequencies, detllKn] — u'lMll ~ 0 when u — m, the most accumte matrix
inversion procedures should be chosen. EMS) is then multiplied by the inverted matrix and divided by
i, yielding the following relationship:

(w + kiAal + am) w) = in?) (9)
where [An] = —([Ko] — u’lM])"[K..}; n = l, 2, 4. By adding the three following identities i""(l'l) =
1971(7) for n = 1, 2, 3 to the system ofequations, Eq.(9J can be extended to a simple eigenvalue problem

{A11 [A21 [0] [A4] (U) .
m [0] [0) l0] 2(0) =1 l (w,
[a] m 10) to] em!) a
to] {0] [ll [0] ram
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where [1'] is the identity matrix. The unknown eigenvector to be computed, contains not only the dis-
placement field (0) butalsoits first, second and third "derivatives" with respect to the X axis, contained
in H0}, i’(l7) and 79(0). The dimension of the unknown eigenvector is {our times the dimension of
the finite element model, which corresponds to the number of solutions (or the eigenvalue (inverse of
the wavenumber).

5. COMPUTATIONWLES

5.1 Circular cylindrical shell
The finite element results and analytic results using Donnell's thin shell theory, Fuller (5], are compared
for a 2 mm thick steel pipe of 1001mm] diameter. Young’s modulus is taken to be 210 000 [MPa], l’ois—
son's ratio 0.3], while the rrrass density is 7 800 [kg/m9]. The pipe is modelled using 48 nodes and 48
propagative thin-shell finite elements, described previously The finite element model has 192 degrees
offieedom.

Elm"

M M H
mm     

 

  —m-um:
WW In:

Fig. 2. Wavenrrmbcrs a/ cirrulnr cylindrical shell obtained analyticnly and by FEM

The comparison between the wavenumbers is given in Fig.1.

Agreement is fairly good except in the viscinity of the cut-on frequencies where ([Ko] - u7[liI]) becomes
very ill-conditioned. The modes of the cross-section computed using the finite element model are shown
in Fig.3.

5.2 I - profile beam
The thin-walled beam profile, often used as a structural framework element, and called I-pmfile, is anal-
yscd using a mesh 0136 thin-shell finite elements and 37 nodes. The finite element model has 148 degrees
of freedom. The I-pmfilc is lsolmml x 180 [mm], while the thickness olthe wall is 4 [mm]. The Young's
modulus is 210 000 IMI’a], Poisson’s ratio is 0.3, and Ihe rna§ density is 7 800 [kg/m3]. The complex
wavcnumbcrs are computed for the excitation frequencies from 0 to 10m [Hzli Then only those prop-
agati ve (real) are then given in a form oI dispersion curves in Fig.4.
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\j
(d) (f)

Fig. 3. Mode: of cmu-seciian of circular tylindn'cnl she" (modes 0—4)

 Fig. 4. (Jude/armed pmpagali] mode: 0/ I-pmfile beam ,‘fflqucncy of excitation 50 [Hz]

The low fiequency Iesults of the finite element analysis, described previously, match the simple Euler-

Bernaulli beam theory well. For theexcitatlon flequency of501Hz] {our "beam" modes of thebeamcross-

section are extracted: the axial mode, two bending modes and the "torsional" mode. The wavenumbers

computed using the beam theory, which correspond to the axial mode, Fig.4.- (a), and two bending
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Fig. 5. Curves of dispersion and pmpgaliue modes fur the excitation Impurity 0/ 500 [fh]

modes, Fig.4: (1:). and ,Fig.4.- (d), are 0.061 [1/ml, 0874 film] and 1.19 l1/ml respectively, while the
finite element computation gives 0.062 [1/m), 0.873 [1/rn] and 1.1311/m].

At higher hequendes the pmpagative modesbecome 'detormed'. The only pmpagative "undefcrrned"
mode is the axial mode. With the incteasing ofthe excitation frequency the other deformed modes started
to propagate energy (cut-on frequency phenomenon). For the excitation frequency of 500 [Hz] except the
axial mode there are another 6 pmpagative modes, Fig.5. The associated wavenumbcrs are 3.6011/m],
4113 |1/m], 8.79 l1/ml. 9.08 [1/m], 15.7 [1 [ml and 16.9 l1/m], which do not match any of the bending
wavenumbers computed by the beam theory: 2.76 lilml and 3.7}[1/m].

Proc.l.0.A. Vol15 Pan 3 (1993) 559

 



Proceedings of the Institute of Acoustics

BEAM DISPERSION CURVES USING FEM

The modesin Fig.5: (c) and in Fig.6.- (4) have neafly the same wavenumbers (8.79 [l /m] and 9.08 [l / ml)

but different mode shapes The modal motions of the two horizontal plate strips are out of phase (180°)

in F135.- (c), while in the mode in Fig.6: (d) they are in phase (0"). The existence "deformed modes

of the mss‘section", involved in the transfer of energy along the thin-walled waveguides, makes the

simple beam approach completely unsatisfactory for the analysis of energy transfer (and the analyse of

dynamic response) of thin-walled waveguides at higher frequencies.

6. CONCLUDING REMARKS

The finite element method presented in the paper is used to compute the dispersion properties of thin-

walled waveguides. i.e. the wavenumbers and assodated cross—section modes. Thefinite element results

coincide with the results obtained by the Euler-Bemoulli beam theory at low frequencies. The finite el-

ement analysis of the thin-walled I—profile beam shows that the beam theories (Euler-Bernoulli, Timo-

shenko ...) become inaccurate at higher frequencies due to defamation of the cross-section during the

vibrational movement.
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