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1. INTRODUCTION

Propagation phenomena play an important role in the dynamic behaviour of large complex structures.
In many physical situations, vibrations transmitted along a structural framework from a remote part of
a structure or machine, can cause undesired vibration and sound radiation far away from the excitation
area. Very often, the mechanical energy is transferred by straight, weakly damped structural elements of
constant ¢ross-section, which act as one-dimensicnal waveguides. Their dynamic properties, described
by dispersion curves, are most often evaluated using one of the beam theories (Euler-Bernoulli, Timo-
shenko, etc.). The most important hypothesis of all the beam theories is that the cross-section stays un-
deformed, while undergping vibrational movement. This hypothesis is valid at low frequencies and for
compact cross-sections (large ratio of area and moment of inertia). However, where thin-walled beams
are concemned, even a relatively low frequency excitation can produce transfer of mechanical energy by
propagating waves assodated with deformed cross-section modes. The analytical methods applicable
to such deformed cross-section modes are limited to simple cross-section geometry {thin-walled circular
cylindrical shell, plate strip, etc.). The paper deals with a finite element method for the computation of
the propagational wavenumbers and modes of a thin-walled beam {waveguide). The method is well
suited to the analysis of both undeformed and deformed cross-section modal shapes. The cross-section
of the beam is modelled by using flat, thin-sheil finite elements with four degrees of freedom per node.
Elements have both the flexural and the membrane stiffness and inertial properties.

2. VIRTUAL WORK FORMULATION

The formulation of equations of motion is based on the virtual work principle. In wiew of the problem
considered, a specific displacement field i,(z, y, z, 1) of the following type will be investigated:

ii{z,y,2,1) = 4y, z)e~ I "I o

A point of an elastic body defined with coordinates z, v and r undergoes the steady-state harmonic
motion with frequency w, Eq.(1). The elastic waves trave! in the z direction with the wavenumber %,
while the spatial function 4;(y, z) describes the motion of the z — y plane (ie. the plane perpendicular to
the direction in wich the wave propagates), Kolsky {1). The corresponding stress &;(z, y, z, t) and strain
&ij(z, y, 2,1) fields read:

Eijlz, . 2,1) = & (y, 1, k)25 I (2.2)

iz, 9, 2,8) = Figly, 2, k)e~fErgiws (2.5)

These are related through the constitutive relationship &;; = E;;48,,, where E;;,, is the elasticity tensor
Dieulesaint and Royer (2].
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The imaginary unit is denoted by § = /=1, while complex quantities have a "tilde” sign ("). Time is
denoted by ¢, while z, y and z are the spatial coordinates.

The virtual work equation for such a waveguide reads:
jn [5-';'(9, 7, R)6E (v, 4, &) — wplz, Wiy, )65 (v, =)] dydz = 0 &

where p(z, y) is the mass density. Virtual quantities {displacement and deformations) are denoted by
§ while * denotes a complex conjugate. It should be noted that the integration is carried out over the
two-dimensional domain only, while the spatial coordinate z, wich coincides with the direction of prop-
agation, is cancelled out of the integral, in the same way 2s the time dependency Similary, the mass
density is also a function of only two spatial coordinates, because the cross-section is assumed to be
constant along the waveguide. The first term in the equation, corresponding to the potential (elastic
deformation) energy, depends on the wavenumber & while the second term, which corresponds to the
kinetic energy, has no such dependence.

The general procedure for formulating finite element equations from the virtual work principle is well
known, Zienkiewicz [3], and is only briefly described here. The finite element formulation used here
seeks to find the displacement field &,(y, z) and the scalar & which satisfy the above virtual work equa-
tion. The finite element equations are obtained by discretizing the domain 1 into elements and ap-
proximating the displacement distribution within each element. For an arbitrary set of values of virtual
displacements, this procedure then leads to a complex set of linear algebraic equaticns of the form.

(k@ -w) 10} =0 )

where [K(&)) is an analogon of a stiffnes matrix, which corresponds to the elastic energy in the system,
(M] is an analogon of a mass matrix, which accounts for the influence of the inertial forces, and {U}
is a displacement vector. The stiffness matrix [ (#)] depends on the wavenumber k. The numerical
problem here consists in finding the set of generally complex-valued scalars &, &3, ..%;, ... and the set
of corresponding complex vectors {{,}, {02}, ...{¥i}, ... for a given excitation frequency w. If the scalar
parameters obtained are purely real, the corresponding vectors are real, too. In such a case, the real
scalars are the wavenumbers of propagating wave fields «;, while the corresponding real vectors {U;)
describe the modes of the cross section of the waveguide. The complex solutions for the wavenumber
correspond to the exponentially decaying near fields, which generally do not transport any appreciable
mechanical energy, unless the length of the waveguide is small or the frequency low. :

3. THIN-SHELL FINTTE ELEMENTS FOR ONE-DIMENSIONAL FROPAGATION

The geometry of the thin-shell propagative element is fully defined by two nodes, denoted by 1 and 2,
and its thickness A, Fig.1. Within the y — z plane the motion of the cross-section can be described by real
interpolation functions. Thin-shell flat elements have four degrees of freedom for a node n: the three
displacements &, ¥, and 1, in the three ditection of the local coordinate axes and the rotation #,, about
the direction of propagation {the z-axis). The global coordinate system is chosen so that the global X
axis is parallel with the local z axes of the elements. Consequently the local y — = plane is parallel with
the global Y — Z plane of an elemnent assembly, Fig.1.
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Fig. 1. Thin-shell finite element of cross-section for anslysis of propogation

The displacement field for the element should now be specified. Strains in the direction normal to the
mid-surface will be assumed to be negligible according to Kirchhoff’s hypothesis, and the displacement
throughout the element, iz, y), #(z, y) and (=, y), will then be taken to be uniquely defined by three
Cartestan components of the displacement, ii,, #, and 1, and of the rotation about the local z-axis 6, of
the midsurface nodes n, (n = 1,2). In order to be consistent with the shell assumptions, rotation about
the local = axis is not taken as a degree of freedom, while rotation about the local y axis is an unknown
quantity defined by the wavenumber & for a given wave amplitude. As has already been mentioned, the
membrane displacements, ii(r, y), #{x,y) and the transversal deflection, &z, y) are treated separately.
Each of these depends only on corresponding nodal degrees of freedom: the in-plane or membrane
displacement fields, i(z, ), ©(z, ¥), involve nodal displacements i, and @, while the lateral deflection,
w(z, y), imvolves the nodal degrees of freedom corresponding to the flexion, 1, and 6, In-plane displace-
ments vary linearly within the local y axis, which assures continuity of displacements in the nodes or
only C? continuity. To be consistent with Kirchhoff's thin shell hypothesis, the lateral deflections must be
interpolated with the ¢! continuity, or the continuity of the displacement and its first derivative, within
the local y-axis. The Hermite's polynomes, or so called “static beam functions” can accomnplish the latter
requirements, Batoz and G. Dhatt [4]. The propagative nature of the displacement field in the z direction
is generated by multiplying the interpolation functions in the y direction by a complex exponentiale=7%*,
To assure the quadrature between two in-plane displacemnents, the displacement component i(z, y) is
multiplied by the imaginary unit j,

2
#z,y) = je2 3" No(y)in (5.a)
n=1
- T
Hz,y) = ey Na(yhin (5.8)
n=l
ki 2 _
B(z.y) = e Y HOy)a + e Y Hl(yMa (5.0)
n=1 n=]1

For thin shells, the transverse shear strains, and therefore the transverse shear strain energy, are negligible
compared with the bending and membrane energy. The stiffness and mass malrices involve integrals
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over the length | of the element, which are generally of the form:
(EF) = jl B DBz ;  [m]= [ ()T ho[H)de (8.0,6.5)

where [B(%)] and [] relate the deformations and the displacements within the element to the nodal
displacements { i},  is the mass density, h is the thickness of the element and [D] is the elasBcity matrix.
The elementary matrices [ 5( )], [] are complex-valued matrices while the element mass matrix [m] isa
real-valued matrix. The matirial losses are taken to be negligible, which results in real-valued elasticity
matrix [D]. It comes out that the complex stiffnes matrix [E(#)] could be written in a form of a matrix
polynomial, as follows.

(E(R)) = &*[kq) + #*[ka] + &[] + (ko] M
where (kq), {ky), [k3]) and [k} are real-valued submatrices. Thus, the complex stiffness matrix becomes
complex only when the wavenumber £ is also complex-valued. The submatrices {k;] and [k] involve
the potential energies resulting from both the membrane and the bending of elastic deformations, while
[k4) corresponds only to bending and [k;] only to membrane deformation energy. The stiffness matrices
and the mass matrix of the element must be transformed to the global coordinate system, and assembled
in order to obtain global stiffness matrices [K,], [K3). [K)) and [Ko) and a global mass matrix {M]. It
should be noted that the transformation of the elementary matrices involves only a two-by-two malrix
of direction cosines between the y, z and Y, Z axes, since the » and X axes are parallel.

4. EQUATIONS OF MOTION OF ASSEMBLED FEM MODEL

The equations.of motion of an assembly of finite elements described previously takes the following form.
(RHUK + R[] + R[] + [Kol - w(M1) {0} = {0) @)

where for a given excitation frequency w, & is the wavenumber, and {{} is an unknown eigenvec-
tor describing the corresponding mode. Generally, both of these quantities are complex. The real-
valued wavenumbers characterize the propagative displacement field, which transmits mechanical en-
ergy within the waveguide. The corresponding modes are also real.

To solve Eq.(8) we must transforme it in a more appropriate form. The procedure starts with the inversion
of that part of Eq.(8), which is not dependant on the wavenumbet, ([Ko] — w?[M]). For some excitation

encies w? = N2, the matrix to be inverted is singular. These frequencies, which are called cut-on or
critical frequencies, can be computed by solving the simple eigenvalue problem ([Ko] — F*[M]){U) =
{0}, 1.e. by letting & = 0 in Eq.(8). Since the part of matrix equation to be inverted is very ill-conditioned
in the vicinity of critical frequencies, det|[Ky] — w?[M]] ~ 0 when w — {k, the most accurate mairix
inversion procedures should be chosen. Eq.(8} is then multiplied by the inverted matrix and divided by
&, yielding the following relationship:

(1) + &4 + (A1) 10) = £40) ®)

where [4,] = ~([Ko] - w?[M])~'[Kn] ; n =1,2,4. By adding the three following identities -y =
1~ {{7) forn = 1,2, 3 tothe systemof equations, Eq.{9) can be extended to a simple eigenvalue problem.

4] A [9) [Ady ( 40) {0)
ARG IR R Y 0T (10)
0 (1l o || &8} ) =% | 20
0 [ 0 0/ \@) #{0)
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where 1] is the identity matrix. The unknown eigenvector to be computed, contains not only the dis-
placement field {{7} but also its first, second and third “derivatives with respect to the X axis, contained
in #{{7}, {7} and &*{{7}. The dimension of the unknown eigenvector is four times the dimension of
the finite element model, which corresponds to the number of solutions for the eigenvalue (inverse of
the wavenumber).

5. COMPUTATION EXAMPLES

5.1 Circular cylindrical shell

The finite element results and analytic results using Donnell’s thin shell theory, Fuller [5], are compared
for a 2 mm thick steel pipe of 100 [mm] diameter. Young’s modulus is taken to be 210 000 [MPa], Pols-
son’s ratio 0.31, while the mass density is 7 800 [kg/m?]. The pipe is modelled using 48 nodes and 48
propagative thin-shell finite elements, described previously. The finite element model has 152 degrees
of freedom.

Exciation
Fraquancy] ™o axial tosioral | modet | mode2 | mode 3
analyti¢ 0.605 0.880 418 - e
800182 "rem | neos |owrw 4.25 . -
analyic | 121 196 .16 an .-
10000 e e m 1.0 1.86 618 B.64 e
analytc 1.82 2.54 7 124 -1
1500 [He] [0y 182 | 284 7@ 128 R
analytic 242 1582 8.2 151 14.5
2000M3) TEEwm | z4z | 282 5.5 153 X3
analyic | 203 | .60 106 75 205
2000l el |3 Jem 106 178 K]
analytic a.64 5.88 118 8.8 248
3000 1He] [ Eaa 364 5.84 11.3 19.4 251

Fig. 2. Wavenumbers of circular cylindrical shell obtained analylicaly and by FEM

The comparison between the wavenumbers is given in Fig2.

Agreement is fairly good except in the viscinity of the cut-on frequencies where {[Jo] — w?[M]) becomes
very ill-conditioned. The modes of the cross-section computed using the finite element model are shown
in Fig.3.

5.2 I - profile beam

The thin-walled beam profile, often used as a structural framework element, and called I-profile, is anal-
ysed using a mesh of 36 thin-shell inite elements and 37 nodes. The finite element model has 148 degrees
of freedom. The I-profile is 180 {mm] x 180 [mm)], while the thickness of the wall is 4 [mm]. The Young's
modulus is 210 000 [MPa), Poisson’s ratio is 0.3, and the mass density is 7 800 [kg/m?). The complex
wavenumbers are computed for the excitation frequendies from 0 to 1000 [Hz). Then only those prop-
agative {rcal) are then given in a form of dispersion curves in Fig.4.
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Fig. 3. Modes of cross-section of circular cylindrical shell (modes 0-4)

Fig. 4. Undcformed propagatif modes of I-profile beam ; frequency of excitation 50 [R:]

The low frequency results of the finite element analysis, described previously, match the simple Euler-
Bernoulli beam theory well. For the excitation frequency of 50{Hz) four "beam” modes of the beamn cross-
section are extracted: the axial mode, two bending modes and the “torsional” mode. The wavenumbers
computed using the beam theory, which correspond to the axial mode, Fig4.- (a), and two bending
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Fig. 5. Curves of dispersion and propagative modes Jor the excitation frequency of 500 [H3}

modes, Fig4.- (b}, and Fig.4.- (d), are 0.061 [1/m], 0874 (1/m] and 1.19 {1/m] respectively, while the
finite element computation gives 0.062 [1/m), 0.873 {1/m] and 1.13 [1/m)].

At higher frequencies the propagative modes become "deformed”. The only propagative “undeformed”
mode is the axial mode. With the increasing of the excitation frequency the other deformed modes started
to propagate energy (cut-on frequency phenomenon). For the excitation frequency of 500 [Hz] except the
axial mode there are another 6 propagative modes, Fig.5. The associated wavenumbers are 3.60 [1/m],
413 11/m], 879 [1/m], 9.08 [1/m], 15.7 [1/m] and 162 [1/m), which do not match any of the bending
wavenumbers computed by the beamn theory: 2.76 [1/m] and 3.77 {1 /m).
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The modes in Fig.5.- (c) and in Fig.6.- (d) have nearly the same wavenumbers (8.79 [1/m]and 9.08 [1/m]}
but different mode shapes. The modal motions of the two horizontal plate strips are out of phase ase)
in Fig.5.- {c), while in the mode in Fig.6.- (4) they are in phase (0°). The existence “deformed modes
of the cross-section”, involved in the transfer of energy along the thin-walled waveguides, makes the
simple beam approach completely unsatisfactory for the analysis of energy transfer (and the analyse of
dynamic response) of thin-walled waveguides at higher frequencies.

6. CONCLUDING REMARKS

The finite element method presented in the paper is used to compute the dispersion properties of thin-
walled waveguides, i.e. the wavenumbers and associated cross-section modes. The finite element results
coincide with the results obtained by the Euler-Bernoulli beam theory at low frequendes. The finite el-
ement analysis of the thin-walled I-profile beam shows that the beam theories (Euler-Bernoulli, Timo-
shenko ...} become inaccurate at higher frequendes due to deformation of the cross-section during the
vibrational movement.
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