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In the current study, real normal mode manifold approach is used to determine the nonlinear
normal modes of the cantilever beam governed by a cubic order geometric and inertial nonlinear-
ity. The system of governing partial differential equations are discretized by expanding the beam
displacement using a series of modes which are the Eigenfunctions satisfying the linear beam
equation along with the boundary conditions for a cantilever beam. The nonlinear normal modes
are then determined by rewriting the discretized system of equation as two first order system of
equations in terms of displacement and velocity. The method of multiple scales is adapted as so-
lution procedure to derive the two first-order nonlinear ordinary-differential equations governing
the modulation of the amplitudes and phases of the interacting modes of a cantilevered beam. The
numerical results show how energy imparted to the first mode get exchanged with other modes
through the nonlinear interactions. The bar chart of the logarithmic of generalized coordinate is
analyzed for the first ten modes. The nonlinear frequency response diagrams of the cantilever
beam for the primary resonance are obtained. The stable and unstable portions of each frequency-
response curves are then determined. The influences of excitation level and nonlinearity on the
nonlinear frequency response curves have been inspected.
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1. Introduction

The physical phenomenon like chaotic behavior, jump phenomenon, combination of resonances
and modal interactions due to nonlinearity in structural dynamics are always challenging to researcher
investigating nonlinear structural dynamics. The cantilever beam is the fundamental element of the
engineering structure which could be simplified model of many complex structure like helicopter
rotor blades, compressor or turbine blade, antennas used on satellite or spacecraft, airplane wings,
gun barrels, robot arms, high-rise buildings and many more. Hence, studying the dynamic response
of such simple configuration will help us to understand the behavior of the complex structure.

Various researcher have investigated nonlinear dynamic behavior of the cantilever beam using
different techniques for many years. The influence of modal interaction on the nonlinear response
of structure with quadratic nonlinearities is reviewed theoretically and experimentally by Nayfeh and
Balachandran [[1]. In reference [2], Arafat et al. studied bifurcation and chaos of the non-planar
responses of metal inextensional cantilever beams with parametric excitation. In ref. [3]], Malatkar
studied theoretically and experimentally the nonlinear response of a flexible cantilever beam to a har-
monic excitation, and demonstrated that the energy can transfer from the third mode to the first mode.
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Lee et al. carried out the stability analysis of non-planar free vibrations of a cantilever beam using
the nonlinear normal mode concept [4]. Even though there is great progress in research on nonlinear
dynamics of cantilever beam, the study of nonlinear modal interactions and the stability of nonlinear
normal mode is still limited.Generally, the nonlinear vibration of a cantilever beam is theoretically
analyzed using two approaches. One approach is to solve the governing partial differential equations
using perturbation methods. Another way is to use Galerkin method to spatially discretize the partial
differential equation and then use perturbation methods. In the present study, the system of govern-
ing partial differential equations are discretized by expanding the beam displacement using a series
of modes which are the Eigenfunctions satisfying the linear beam equation along with the boundary
conditions for a cantilever beam. The method of multiscale is used to derive the first order nonlinear
ordinary-differential equations governing the modulation of the amplitudes and phases of the inter-
acting modes of a cantilevered beam. Then the modulation equations are solved numerically to study
the stability of the nonlinear normal modes.

2. Governing Equation

The equation of motion governing an Euler-Bernoulli clamped-free uniform beam under large
deflection using inextensionality constraint is derived in [5]. The non dimensional form of equations
governing the motion of a cantilever beam is given by

/ T rx N7
w + w//// _|_ (w///w/2 + w/w//2> + |:w/(/ / w/2dxdx>:| — 0 (1)
1 Jo
The associated boundary conditions are

w=w=0at z=0 and w' =w" =0 at x =1. )

The transverse displacement of beam w is nondimensionalized by the beam length L and time is

nondimensionalized by LQ\/% where E'] is the rigidity of the beam, p is the beam density per unit
length, and A is the beam cross-section area. The over dot and prime indicate differentiation with
respect to time ¢ and distance along the beam x respectively. The third term in the equation is
cubic order geometrical nonlinearity that is consequences of non-linear dependency of curvature on
the w. The fourth term in the equation is non-linear inertial term.

The normal modes of linear system can have two distinct properties: invariance property and
modal superposition. The concept of modal superposition cannot be apply for nonlinear system
however the concept of invariance property can be extended to nonlinear system. In terms of the
system’s phase space, normal mode motion occurs on a two-dimensional subspace which is invariant.
In ref. [5], Hsieh et al. extended the concept of a normal mode motion occurring on an invariant
two-dimensional subspace to nonlinear system defined in equation (I)) - (2). These subspaces are
two-dimensional planes for linear systems where as for nonlinear system, these are curved and are
referred to as the nonlinear normal mode manifolds. This manifold passes through stable equilibrium
point (w,w) and is tangential to the Eigen spaces of the associated linearized system at that point.
The response of entire system is described in terms of response of some single point z = x through
amplitude dependent mode shape as

w(zo, t) = W(wo(t),wo(t), z, xg), w(xg, t) = W(wo(t),wo(t), x, zo), 3)

where wy(t), wo(t) are displacement and velocity of point x.

The authors used equation (3)) as geometric constraints to eliminate time derivatives form the equa-
tion of motion and then obtained nonlinear normal modes through asymptotic expansion of resultant
spatial equations. However functions W and W valid at a point 2y and may not be valid globally. The
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selection of the point zy makes this method cumbersome. To overcome the shortcoming of the above
method, Nayfeh et al. [6], and Nicolas et al. [[7]] proposed to first discretize the system using Galerkin
approach. Nayfeh et al. in [6] demonstrated equivalence of several methods like invariant manifold
method, perturbation methods applied to discretize system and multiple scale method applied directly
to equation of motion to study non-linear modes of continuous system with inertia and geometric
nonlinearity. In ref. [8]], Nayfeh et al. showed that the method of multiple scales applied directly to
the governing partial differential equation and boundary conditions is equivalent to discretization of
the original problem to obtain an approximate non-linear modes and natural frequencies of cantilever
beam with cubic nonlinearity.

The continuous system given in (I) is discretized by expanding beam displacement using a series
of linear modes. Each of these modes has a modal amplitude called generalized coordinate which is
function of time [9]]. In modal analysis, the total displacement of the beam is expressed as

w(z,t) = Z ¢ (1) oi(x), )

=1

where, 7 is the number of modes and ¢;(¢) are the unknown generalized coordinates. ¢;(z) are the
beam Eigenfunctions obtained by solving the equation (I]) neglecting the nonlinear term and satisfying
the boundary conditions (2). The Eigenfunctions are (5])

¢i(z) = cosh(a;x) — cos(a;x) — B;[sinh(a;x) — sin(a;x)], ®)
where «; are the roots of the equation

cosh(a;) + cos(a;)
sinh(a;) + sin(a;)

(6)

cosa;cosha; +1 =0 and Bi =

The solution of equation @) is available in literature [9]. w; = o are the corresponding non
dimensional natural frequencies of the beam in bending. Useful mathematical property of the Eigen-
functions is that they form a set of orthonormal mathematical functions, which means

[ owsiir=s5, [ 6@ =uidy, 9
0 0

where d;; is the Kronecker delta function. Substituting the general solution (4) into (1) and multiplying
by@; then integrating over the length of the beam.

Gi +w?q; + Ni(q,4,4) =0 8)

For the case of cubic geometric and inertia nonlinearity, the nonlinearity can be expressed as [6]]

Ni(q,4,4) = NlijQ? + N2z‘ijC]]2- + NQQ?%' €)

h , 1 1 T rx
I N1y = [0l(610l) eyde and N2y = [ (6 [ [ oPddal's,dr. (10)
Using (8) Ni(¢,4,4) = (N1ij — wiN2y)q} + N23jq;4; an

The nonlinear normal modes of the cantilever beam are determined using the real normal mode
manifold approach. The procedural details of the method is elaborately given in [6]. The £** nonlinear
mode obtained by treatment of the discretized system can be written as

N

wi(,t) = ¢r(x) () + > dulHLjngy + H2kqudi] + - - (12)
Jj#k

where,
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(Twi — wi)N1j, — (bwi — w?)wWiN2jy,

(Wi = wi) (9w — wj)

(Wi = wi) (9w — wj)

Every point of the system reaches its maximum at the same instant. Thus, the mode shape W (z)

is defined by N
Wi(x) = di(r)q" + 3 Su[H1ng” + . .. (14)
i#k
where ¢* is the maximum value. The first four nonlinear normal modes are given in figure [T]along
with linear normal modes in section [3.11
The modal interaction nonlinear vibration when system is excited by external harmonic excitation
of farm P = Pycos(€)t) is studied. The discretized equation can be expressed as

44__N N n
Gi + g = ZZZ

fori: = 1,2,3,...n, where n is the number of modes and sufficient number of modes are con-
sidered so that the series is converged. In the current calculation, summation over 10 modes are
considered. And N1;;, N1;; and P; are defined as

NTarq + N 25 (Geq + Gedr) (g5 + P (15)

Nty = [16(e) Vodnde N2 = [ ]6 [7 [ otarda] 6z P = [ Podr. ao

Numerical integration is carried out using Simpson’s 1/3" rule to calculate M ;kl and N jkl matri-
ces. The nonlinear modal interactions is studied using prescribed initial conditions ¢;(t = 0) = d;
and ¢;(t = 0) = 0. The results are presented in the section[3.2]

Now, The perturbation analysis is carried out on the nonlinear equation to understand the local
stability of solution. The multiple scale method is adapted as solution procedure to investigate the
case of primary excitation (2 ~ w) of the system. At primary excitation, small magnitude of external
excitation can cause comparatively large response of system due to primary resonance. Therefore,
in order to study primary resonance(weak excitation) of the system, equation (8)) using (I1]) can be
written in the form (17)) assuming non-linear terms to be at the same level of approximation as the
external forcing. Therefore, a small dimensionless parameter € as a book keeping device is introduced.
It is assumed that the beam vibrates predominantly in in the first mode in the range of frequencies
considered in this study. Hence, only the first mode is considered.

j+w?q= e(Pycost — g — cqqz) 17)

where v = (N1; — w?N2;),c = N2,. In the method of multiple scale, solution is expanded as a
function of multiple independent time variable, in power series of small parameter (¢). In this method
solution is assumed to be uniform expansion of the form

q(t,€) = qo(To, Th) + eqi (To, Ty) + O(€?) (18)

The expansion is carried out to the second order of €. In the equation ¢y and ¢; are functions to be
determined and 7 =t is a fast scale characterizing motions occurring at one of the natural frequencies
and T = et is the slow scale characterizing the shift in the natural frequencies due to non-linearity.
The time derivative in terms of 7}, are given % =Do+eDy+ ...

Substituting into and equating to zero the coefficients of like powers of € yields

v - (Dg + wz)qo =0, and €' : (Dg + wz)ql = Pycos(2Ty) — 2DoDyqo — ”ng’ — ch(D0q0)2 (19)

Equation to the order € is the linear decoupled free vibration equations of the beam. Considering
boundary conditions of the cantilever beam, the general solution to the such equation is of form

qo = A(Ty)e™™ + A(T))e ™o, (20)
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where A is an unknown complex-valued function of the slow time scale and A is the complex
conjugate of A;, which are to be determined. The detuning parameter, o, is introduced to convert the
near resonant term to resonant one. Letting 2 = w-+e€0, using 17 = €et, we can write Q7 = wly+oT}.
Substituting into equation to the order ¢! and equating the coefficient of ¢®“7° in the resulting
equation to zero to meet solvability condition [10]

P . _
?Oele — 2iwA’ — (37 4+ cw?)A2A = 0. (21)

To solve equation , let A = %a(Tl)ew(Tl). Substituting into equation and separating real

and imaginary parts, the following pair of modulation equations are obtained.

P 3 P,
a = 2—0 sin 1) and way) = owa — %(37 + cw?) + ?0 cos(1)). (22)
w

where 1) = o T} - § and ¢/’ = o - #'. Squaring and adding the two equations (with o’ = 0 ; ¢/ = 0), a
is given by the implicit solution to the following frequency response equation.

2
a|20w — %(37 +ea?)| =+h (23)

inserting 0 = ) — w and ignoring ¢ which merely serves the purpose of indicating the level of
approximation to study variation of amplitude with the excitation frequency.
Q CL2 2 PO

(24)

The stability of solution is determined by evaluating the Eigenvalues of the Jacobian of the equa-
tions at the singular point(a, ¢/). The Eigenvalues ()\;) of the Jacobian matrix is found that

A i—\/ [ 3y 1 2)] [ 3 3y 4 ew?) (25)
= —|lo— — cw?)| |0 — — cw?)|.
1,2 8w g Sw gl
A solution a is unstable if at least one eigenvalue has a positive real part, otherwise it is stable.
The stability plots are explained in the section

3. Results and Discussion

The results for the nonlinear normal mode and the stability analysis of a cantilever beam studied
using the techniques described in the previous section is presented here. Initially, for the case of
nonlinear free vibrations, the nonlinear normal modes constructed using real normal mode manifold
approach are presented. Then, the nonlinear interaction of normal modes for the case of forced vibra-
tion is addressed where the plate motion is excited by the uniform external pressure having sinusoidal
time dependence. Finally, the detailed study of linear stability analysis of nonlinear vibration of a
cantilever beam is discussed.

3.1 Nonlinear Normal Modes

The nonlinear normal mode is a motion where every points in the system execute periodic (not
necessarily harmonic) motion with the same period. Every points in the system pass through their
static-equilibrium positions at the same time, and achieve their maximum displacements at the same
time. It can be shown form equation that at any instant of time ¢, at which ¢(¢y) = 0 then
w(zx,tg) = 0 for all = and at any instant of time ¢* at which ¢(¢*) = 0, then w(z, t*) is zero for all x.
Moreover the corresponding value of ¢ at t* i.e. ¢* = ¢(t*) and w(z, t*) are maximum. For a given
q*, which depends on the initial conditions, the nonlinear mode shapes is compared with the linear
ones in figure [I]for the lowest four modes. For very low values of ¢*, the nonlinear modes become
close to linear mode. Therefore there is critical value of the ¢* below which the construction of the
nonlinear normal mode breaks down.
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Figure 1: The comparison of linear and nonlinear modes for the lowest four modes.
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Figure 2: Modal interaction of linear and nonlinear Vibration
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Figure 3: Modal Interaction of nonlinear system for different level of excitation

3.2 Modal interaction

The linear normal modes of linear system are uncoupled that is the energy imparted to any one
mode remains in that mode. But in presence of non-linearity, normal modes are coupled. In nonlinear
system, nonlinearities provide a mechanism for exchanging energy when imparted into one mode
with other modes under certain conditions [10]. This situation in which energy is exchanged between
modes in a system is studied here.

The bar chart of the logarithmic of generalized coordinate is plotted for the first ten modes. The
figure [2(a)|is the bar graph for the free linear system when the first mode is excited with the initial
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displacement of magnitude 1. In the response also the first mode gets excited but all other modes
which indicate that the modes are decoupled. For the same initial condition, the bar chart is obtained
for the free nonlinear system. From figure [2(b)]it is evident that modes do interact with each other
for the nonlinear system. The similar study is carried out for the nonlinear forced vibration to study
the influence of F on the nonlinear modal interaction. Figure [3(a)] to shows the nonlinear
interaction of modes for different values of Fy. The coupling of modes becomes stronger for higher
value of F,.

3.3 The Perturbation Analysis

The behavior of cantilever beam in presence of cubic order non-linearity is presented in this sec-
tion. The frequency response of the system is obtained by plotting the variation of amplitude with
excitation frequency form equation 24] Figure [4(a)| shows the effect of non-linearity. For v = 0 and
c¢ = 0, the plot shows familiar linear resonance curve in which the peak is straight up unbounded.
The plot also shows that the inertial nonlinearity causes frequency response curve bend towards right
in absence of the geometric nonlinearity. The frequency response curve of geometric nonlinearity
alone is much similar to that of combined inertial and geometric nonlinearity which indicate that the
geometric nonlinearity has strong influence on the softning effect. The geometric nonlinearities are
more important for the response of the first mode than the inertia nonlinearities and similar conclusion
drwan by Nayfeh et al. in [11].

Linear
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Nonlinearity : A

. _P0O=10
PO=15
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(a) Effect of non-linearity (Py = 1) (b) Jump phenomenon (c) Effect of excitation level

Figure 4: Frequency responses of nonlinear system. Red dotted line indicates unstable solutions and
blue dotted line indicate the stable solutions

Figure [d(b)shows typical frequency response curve for nonlinear system at external excitation
Py = 1. There are some interesting observation made on response curve. First, the response curve is
unbounded due to absence of the damping. Second, The peak of the curve is bent towards left. This
is characteristic of the systems with nonlinear restoring forces of the softening type (v < 0). This
contrasts the straight-up peak characteristic of linear systems. Third, there are discontinuous jumps
in the response, also a consequence of the bent peak. Fourth, stability of solution can be observed in
the frequency response plot. The solution to be stable, there should exist no eigenvalue with positive
real part for the equation[25] The condition at which solution is unstable is met in the region of red
line curve in the figure and all other parts of the response are stable.

Figure [4(b)| shows the existence of multiple solution. There are two vertical lines in the figure,
marked 1 and 2. For the line 2, it is observed that there are three amplitude possible A, B and C
corresponding to the single frequency. The point B is unstable and A, C are stable.

The figure also shows the phenomenon of jumps, which are discontinuous changes in the response
of a system as a forcing frequency is slowly varied. When forcing frequency is increased slowely from
some very low value, then the system response stays on the lower branch, as it reaches line 2, it jumps
up to the higher branch, as shown by the arrow [10].

The response curves are plotted in figure for the different level of magnitude of external
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excitation (Fp). Naturally, as (P) is reduced then so is nonlinear bend of the peak. Also, the width
of the resonant region shrinks when (F) is reduced.

4. Conclusion

The nonlinear normal modes of cantilever beam with cubic order geometric and inertia non-
nonlinearities are constructed using the real normal mode manifold approach. The governing equa-
tions are discretized by expanding the beam displacement using a series of complete set of basis
functions that satisfy the boundary conditions, namely, the linear mode shapes. The behavior of
nonlinear system such as multiple steady state solutions, jump phenomena and stability analysis are
studied for the primary resonance. Two first-order nonlinear ordinary-differential equations govern-
ing the modulation of the amplitudes and phases of the interacting modes of a cantilevered beam are
solved analytically. Stable and unstable portions are indicated in the nonlinear frequency response
diagrams. The influences of level of external excitation on the nonlinear frequency response curves
have been inspected. It is observed that the frequency response of the cantilever beam is strongly
affected by the non-linearity and excitation level.
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