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1. INTRODUCTION

The knowledge of the acoustic ocean impulse response function (OIRF) or the correponding ocean transfer

function (OTF) can be of interest in communications and when validating models of ocean environment.

So far most authors, both those who employ rayotracing and those who do acoustic signal procwsing have

considered the problem in the approximation of geometrical optics. It is well known that in this approx-

imation the received signal (otherwise known as response) can be modeled as the sum of attenuated and
delayed copies of a transmitted signal (otherwise known as signature). It has been shown in Fradkin[1] that
formally the same is true in the presence of the first-order difl’raction effects (the parabolic approximation).

The only difference is that in this case each of the macropaths of the geometrical optics approximation

is surrounded by a bundle of the so-called micropaths, and the sum over all macro- and micropaths can

be viewed as an approximation to a corresponding (path) integral. Thus, mathematically speaking, the
response is a convolution of the signature with an (ocean) impulse mponse function.

It is also well known that in general, in the absence of further relevant information, the mathematical

problem of deconvolution (in this case, identification of the ocean impulse response function on the basis
of signature/response measurements) is ill-posed [2, 3]. However, for some types of signal or noise, iden-
tification can be achieved. For example, the OIRF identification can be carried out when the signature
possesses a bandwidth comparable to that of the OTF and nearly flat density spectrum as in Williams and
Battestin[4]. This method does not rely on geometrical optics approximation and is easily generalized to
non-flat density spectra. On the other hand, the restriction on bandwidth is crucial for its applicability.

hadkin [1,5] has shown that under some additional assumptions the identification can be carried out even

when the signature possesses the bandwidth considerably smaller than that of the OTF. These assumptions
are: a) the signature contains practically no low frequences, b) only direct (deep sea) paths are considered,
c) the maximum probable time delay along the direct path is known. In this paper we discuss results
obtained on applying the method descibed in Fradkin[l, 5] to several representative signature/response

pairs collected during the Nepali 85 This! (see Uscinski et al.[6]).

2. DESCRIPTION OF THE PROBLEM AND ITS SOLUTION

The Napoli 85 This] was conducted in the central Tyrrhenian Sea in October 1985. Its full description can
be found in Uscinski et al.[6]. The ocean parameters were such that at the distance of interest diffraction
was small but not always negligible. The schematic geometry of the mu is presented in Fig. I. The
signal measured at point S close to the source is referred to everywhere below as the signature and the
signal at point R is called response. A representative signature/response pair is shown in Fig. 2, and
this signature’s discrete Fourier transform, in Fig. 3. It is important to realise that all the signals were
low-pass filtered and then digitised by the hardware, so that they contain I = 49 discrete points sampled at
an interval of Ar. = 1/6 ms. The low-pass filter had a cut—off frequency of 3 kHz and a very low accuracy
between 2 and 3 kHz. We also have to emphasize that S does not lie on a ray connecting the source to R,
although it is reasonably close to it.

Proc.l.O.A. Vol 13 Pan 9 (1991) 220



 

IDENTIFICATION OF THE ACOUSTIC OCEAN IMPULSE RESPONSE FUNCTION

It has been shown in FradkinIl] that since for signals propagating along the direct path during the Napoli

85 mm the ocean can be considered to be non—dispersive and weakly irregular and since for these signals

no phase reversal takes place, one can write

Ni

;,=Exnsi,.A1-+m, i=0,...,r—1, (1)
n=N.

where I, No, and N. are natural numbers; the tilde,', indicates the measured signals contaminated with

noise; E; E i(ti+[) is the response measured at the moment ti...) = (i + I)Ar°; Ara is the sampling interval;

is... E 5(ti.” — 7,.) = sum“) _. l..) is the signature measured or interpolated at the moment t3." — 1n;

7,, = nAf is a delay in signal propagation; A? is the interpolation interval; (3 is the interpolation factor

equal Are/Ar; m is the composite error at the moment ti“; EA? is the unknown proportion of signature

arriving with delays in [7mm — AT]. The signature, E, is interpolated because in the case of the Napoli

85 Trial the resolution required for the ocean transfer function, K, is finer thanthe sampling interval for

i and E.

The equation (1) describes i as a (discrete) linear convolution of i with K. The process of utimating K

on the basis of (1) and known E and F is called deconvolution. In general. deconvolution is an ill-posed

problem, meaning that its solution, R, is sensitive to high-frequency errors in E and i. It is doubly ill-posed

when the signature possesses the bandwidth considerably smaller than K, because in this case no linear

model in combination with these data can provide information on the K’s high frequency components (an

obvious consequence of the Nyquist theory). On the other hand, if some non-linear physical constraints

are used, these components can be identified. Moreover, in some circumstances these constraints might

allow one to filter out some of the error in a and i.

When dealing with a particular deconvolution problem it is impossible to say prior to data analysis what

particular constraints may do the job. As a rule this can be established only by trial and error. In the case

of the Napoli 85 data it has been concluded that an unique solution, K, producing reasonable residuals

and staying reasonably close to its a priori estimate (which happens to be zero) can be obtained - provided

this solution is assumed to be non-negative and possessing a known finite support. The measures of what

is reasonable should be available a priori, otherwise the problem cannot be solved. The requirements to

satisfy the goodness—of-fit as well as other constraints are, as a rule, contradictory, and one can claim that

the problem has been solved only if some trade-oi? had been achieved.

Two of the constraints found to be useful when dealing with the Napoli 85 data are a consequence of the

physical nature ofKnA-r described above. Indeed, this suggests that

ano, Vn=N°,..., N. (2)

and that with large probability, the (discretised) integral of K,

N:

MK“! 5 2 KnA-r 5 a, (3n)
n=N.

It is easy to show, by assuming only one direct path and using simple geometrical spreading arguments -
see Fradkinfl], that

o e: 0.12 (3b)

Another important constraint dealing with the raidual variance has been obtained by way of exploratory
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data analysis. As discussed in fiadkin[5], comparing signatures measured by different hydrophones and
also filtered and non-filtered as well as interpolated and non-interpolated responses it can be established

that 2
1—1 N. _

33, a )3 (ii — 2 KH 5;,“ Ar) s 0.3 a; (4a)
i=0 n=N.

where
1 1-1 1 1-3

g; E Em — flap/2, and 1" E T iii (“5)
i=0 [—

The value of 22 % is higher than the instrumental error (believed to be a: 4% - J. Potter, pers. comm), but
this should come as no surprise: the residual variance is an wtimate of the variance of the composite error
1] involving not only instrumental but also model and preprocessing errors - see Radkin[9]. (A somewhat
different to (4a) definition of 3: could have been used by Dr Potter as well.)

Let us now describe the last of the above mentioned constraints. It has been obtained in Fradkin[l] by
estimating To, the maximum probable time-delay along the direct path, using physical considerations and

ocean parameters. The estimates of 7;, are not very reliable and can difier from the value of 4.10'5s arrived
at in B‘adkinfl] by as much as 100 %. Let us put the question of the corresponding error bounds aside for
the moment and concentrate on what can be done when the value of To is known exactly. Then the width

of the OIRF is
An; = fa/Ar (5)

Note that in the absence of precursors (a reasonable assumption when dealing with the direct path - see

e.g. Dashen et al.[7]) we can choose N.: = 980. Then to carry out the relevant computations we just have
to make sure that N 2 Na + Am.

Let us summarise. It has been shown in Fradkin[l,5] that one can minimize the cost function,

1-: Ni ’ N:
J 52(5. - 2 Knii,..Ar) + A! z KfiA‘r, (6)

i=0 n=N. n=N.

with respect to A” and K under all of the above constraints and obtain an unique result. A representative
OIRF is shown in Fig. 4. It is important to emphasise that constraints (2) and (5) turn out to be active,
that is specifiable prior to each particular run, and constraints (3a) and (4a) turn out to be passive, that
is verifiable only after each particular run. The justification of the choice of the cost function (6) is given
in fiadkin[5]. The computational algorithm is essentially that offered in Butler et al. [2] and described
in Fradkin[5]. It is incorporated into the DECO package under the name of DECOP (for DECOnvolution
for Positive transfer functions).

It is important to discuss the nature of the constraint (5) in more detail. Let us start with the situation
when the value of To is known exactly. Moreover. let us first assume that the actual and not just probable

maximum time delay during, say, the first event is equal to 7.. Then (5) is similar to the finite support

constraint discussed in Schafer et al.[3]. It is mentioned there that a combination of such aconstraint with
(2) often allows one “to restore information on high frequences” (so that whatever the algorithm is applied
for minimizing (6) under (2) and (5) high molution is possible.)

The way (5) must be incorporated into the computational procedure is not exactly straightforward. The
only related quantity one can speein prior to each run is A”. However, it has been noticed during the
initial exploratory data analysis (hadkin[5]) that the greater the value of A” one chooses the greater the

Proc.l.O.A. Vol 13 Pan 9 (1991) 222



  

IDENTIFICATION OF THE ACOUSTIC OCEAN IMPULSE RESPONSE FUNCTION

an:
an
H—Wu-Ina.

can! iim _________ -."‘_R
an.~ - 0 ‘' '' _- NV

i
l
l
!
)

 

FIG. 2. A :ypinl sigmxure/rzsponse pair.

a. 2'

 

:
man“ (II

‘15: J. Maduli and phat: of (h: Fouria mmponcnu ur' :igutur:

 

K
l
fl

(b) O u: 05
IMIMI)

FIG. 4. An alimll: at K_obl:in:d with DECO?

Proc.l.O.A. Vol 13 Pan 9 (1991) 223

  



  

IDENTIFICATION OF THE ACOUSTIC OCEAN IMPULSE RESPONSE FUNCTION

resulting Anl. It is therefore easy to establish by trial and error which A“ poduoes an estimate of the

first OIRI" which possess a desirable width. The same A, can then be used to obtain the amplitudes and

widths of other OIRF etimates.

Of course, since any estimate of 1'. obtained from physical considerations is of a purely probabilistic nature

no one can seriously expect the actual width of the OIRF to be equal to 11, during the first or any other
arbitrarily chosen event. However, what we can expect to achieve by following the above procedure is to

be able to see how the estimates of the OIRF change from one event to another - e.g., map their relative

amplitudes and widths. Why can we expect this map to reflect the changes in the actual OIRFs? Firstly,

the solution of (6) is formally equivalent to the Bayesian or a posteriori estimate of K based on the a prior-1‘

atimates of K as zero and of its covariance matrix as X‘zl (with I being the unity matrix and hence A"
being the standard deviation - see e.g. Hoerl and Kennard[8]). Of course, since there there is no reason

to expect the a mini estimates of K and their covariance matrices to be varying from one event to the

next, it is reasonable to compare the a poster-tori estimates of 'K obtained for different events while A:

is kept the same. Secondly, it has been noticed during the exploratory data analysis that” all the OIRF

amplitudes (and widths) normalised to the amplitude (width) obtained with the first (or any other) event

do not change when A7 changes from 0.001 to 9 and An; changes from 1 to 40. The corresponding ||K||1

(and hence the relative amplitudes and widths) change by about 10 %. When An; changes from 6 to 13,
that is by 100 %, the changes in Hth are about 2 %.

To reiterate, even though during each particular run the constraint (5) is used as an “equal to" constraint
its true nature is probabilistic, and only relative amplitudes and widths can be estimated with any degree

of certainty - when an arbitrary (sayfirst) event is chosen to produce the OIRF estimate with the specified
width. However. this is not the end of the story. The situation may be improved if first all the events

are processed with one A2, and then the event producing the largest width is used to choose a new A:
making this width Am. The results obtained with the new choice of A” must be treated probabilistically

still. but the corresponding error bounds on the absolute amplitudes and widths can be now expected to
be considerably smaller.

Let us turnour attention to a more realistic situation of the Napoli 85 Trial. In this case, as already

mcntined, the value of 1'. is not known exactly and can difl‘er from the original estimate by as much as

100%. It is easy to see that this complication does not change the essence of the arguments. When trying

to estimate relative amplitudes and widths the procedure is the same. When trying to assess the absolute

amplitudes and widths, a range of A7 should be considered allowing for the 100 % error in the maximum

probable width.

Finally, let us discuss the exact role played by the constraint (5). What would happen if it was dropped
altogether? In this case, the cost function (6) could still be minimized with respect to K and )2 under
the passive constraints (2), (3a) and (4a). This can be done by applying the simplest available regression
algorithm to model

f5=E-§i+m, l=0,...,l—l (7)

The model (7) can be obtained from (1) by assuming K to be a 6-function. The corresponding residual
variance is

a; e 0.27 a; (80)
and the corresponding regrmsion parameter.

I: e 0.12: 6% (86)

Note that (2) is satisfied and since I: z a, so is (3). Some researchers would say that because (7) is a
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simpler model than (1) and it produces a similar fit, (7) should be preferred to (I).

4. DISCUSSION

When dealing with ill-posed problems the usual reliance on the gmdnmf-fit can be quite misleading:

firstly, even if the problem is well-posed the residual error is often underestimated - if say only information
on the instrumental error is used. (The latter is about 4 % in the case of the Napoli 85 'hial, but the
composite error is much higher - see Hadkin[5, 9]). Secondly, when the problem is ill-posed the goodness
of-fit cannot be relied upon as the only important criterion - without additional constraints the problem
cannot be solved at all. In view of this, when comparing two models, the simpler one producing the same

or even better goodness—of-fit, one should not prefer the simpler model automatically - such achoice would

make sense only in the absence of other criteria (and provided the errors in residuals were estimated in
a reliable fashion). When there are other physically justifiable criteria which the more complex model

satisfies and the simpler model does not, it is the more complex model that should be preferred.

Another objection sometimes raised against choosing a more complex model is the fact that it involves
additional assumptions all having certain probabilities associated with them (such as the assumption above

that the maximum probable width of the OIRF is known in some sense). Of course, the additional estimats
obtained with a more complex model may have larger error bars associated with them than those which can
be obtained with a simpler model. In the case of the Napoli 85 data, the absolute amplitudes and widths of
It have larger error bars than the values of k do. (The relative amplitudes and widths are reliable though
- they vary by only about 2 % when 1,, varies by 100 76.) Granted the truth of the above statement, it is
also true that to have some answers is better than to have no answers at all. Modellers dealing with large
real-world systems more often than not have to contend themselves with larger uncertainties than they
would wish. The reason for choosing a more complex model is always essentially Bayesian: one attempts
to draw conclusions from various assumptions - making sure thatthe assumptions are justifiable and that
the amciated uncertainties are taken into account.

There is one final objection often raised when a more complex model is chosen. Some researches believe
that if no information can be extracted from data using a simple model the information extracted using a
more complex one is not in the data. First of all, it is important to remember that no information can be
extracted from the data at all without relying on a model of one sort or another. Secondly, one can give a
very simple if artificial example to demonstrate why this commonly held belief is based on a misconception.
If, as is the case with the Napoli 85 data, the signature possesses a narrower bandwidth than the 0111?,
obviously no linear model can restore information on high frequences. However, if one happens to know on
the basis of some physical considerations that the corresponding OTF is periodic in the frequency domain
with the “period” being equal to the signature-’3 bandwidth, then this knowledge in combination with the
data provides one with the complete information on the OIRF. Of course, the above periodicity assumption
is artificial, but it illustrates an important principle: the non-linear constraints tying up the lower and
higher frequences (as the non-negativity and finite support constraints taken together do) can lead to good
quality results as dependent on the data as they are on the model - even if no linear model can produce
these results.

To summarise, the convolution model (6) supplemented with the non-negativity (2) and maximum probable
width constraint (5) leads to a more realistic (if worse) fit than the regression model (7). The estimates
obtained with the latter satisfy the constraint (2). The estimates obtained with either satisfy the constraint
(3). Both models produce estimates of “K”; with a comparable accuracy. The convolution model produces
highly accurate estimates of relative amplituda and widths as well. It is expected to produce estimates of
absolute OIRF amplitudes and widths with error bars less than 100 %. Consequently, the deconvolution
model (1), (2) and (5) is believed to be of a considerable use when dealing with the Napoli 85 data.
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