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The paper describes propagation of long wavelength (LW) sound in the presence of a corrugated
resonant surface, that is the periodic arrangement of acoustic resonators upon a rigid panel. The
method of two-scale asymptotic homogenization is applied to derive the effective boundary con-
ditions satisfied by the LW field. The approach relies on the scale separation between the long
wavelength and the characteristic size of the periodic arrangement. In that frequency range, a
locally periodic boundary layer develops in the proximity of the surface. The analysis of the
boundary layer is performed in order to derive to the effective boundary conditions. At the lead-
ing order, an effective surface of local reaction is found. At the corrector order, this description
is supplemented by effects arising from multiple near-field interactions and the surface micro-
corrugation. This leads to a non-local boundary condition that depends on the simple and double
in-plane gradients of the pressure. These phenomena are illustrated for the case of 2-D periodic
array of slotted cylinders with an extended neck. Effects of the centre-to-centre spacing and ori-
entation of the resonator aperture on the non-locality and apparent end correction are studied.
Results from the leading order and corrector order descriptions are compared for oblique plane
wave reflection. It is shown that accounting for the corrector order terms leads to a lower reso-
nance frequency and an additional phase shift induced by the corrugation.
Keywords: Resonant surface; Boundary layer; Two-scale asymptotic homogenisation.

1. Introduction

One of the approaches to the design of resonant metasurface for sound control is to position the
resonators upon the rigid panel instead of behind it. This makes the out-of plane direction an addi-
tional degree of freedom in the design, and allows higher concentration of resonators at the surface.
This, however, might lead to their close positioning and hence the possibility of strong near field in-
teractions between the resonators and with the panel. Moreover, balancing radiation and dissipation
damping for admittance matching (e.g., critical coupling for perfect sound absorption) or using sev-
eral mistuned resonators per elementary cell for broadband absorption might lead to the increase of its
size in relation to wavelength at resonance (poor scale separation) as often the only way to decrease
visco-thermal losses or place several resonators within the unit cell is to make the cell bigger. To
derive effective boundary conditions for the resonant surfaces, two-scale asymptotic homogenization
has already been successfully applied [1] and it results in an effective surface admittance when only
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Figure 1: Example of corrugated resonant surface in 2-D. Periodic array of slotted cylinders with
extended neck arranged at the rigid surface S.

the leading order terms in expansions are accounted for. To investigate the deviation from this de-
scription in the case of the poor scale separation, the two-scale asymptotic expansions are developed
up to the first corrector order to account for multiple near-field interactions between the resonators
and the surface corrugation induced by their arrangement upon the rigid panel.

2. Resonant surface and boundary layer homogenization

The resonant surface consists of the 2-D Σ-periodic repetition of the unit cell Ω that includes a
linear acoustic resonator (boundary Γr, outward unit normal vector nr) arranged upon the rigid plane
surface S (normal vector n directed at air), with Σ being the footprint of Ω on S, see Fig. 1. The
propagation of air-borne acoustic waves, with the pressure p and the particle velocity v, is studied
in the presence of the resonant surface and under ambient conditions, with the air density ρe, the
atmospheric pressure Pe, the adiabatic constant γ, and the sound speed c =

√
γPe/ρe at equilibrium.

The analysis is performed in the linear harmonic regime for frequencies ω/2π (time convention e−iωt)
close to the natural frequency of the resonators. The fields p and v are governed by the equations of
mass and momentum conservation:

iωp = γPediv(v) ; iωρev = grad(p). (1)

In response to the external field p, the resonator in the unit cell Ω produces the particle velocity
vr = R(p) at its boundary Γr, where the linear operator R depends on the inner equilibrium of the
resonator (not specified at this stage). The velocity vr is balanced by the velocity v on the surface of
the resonator, that is v · nr = vr · nr at Γr. At the rigid surface S, v · n = 0. We consider arrays
for which a scale separation exists around the resonance, that is, the reduced wavelength L = c/ω
(macroscopic scale) is much larger than the characteristic size ` of the unit cell Ω (microscopic scale).
This condition is quantified by the small scale parameter ε = `/L � 1 and allows application of
the two-scale asymptotic homogenization [2, 3] . The homogenization procedure is based on the
two-scale description of space and on the asymptotic expansions of the fields. While it is usually
applied to derive the constitutive laws and effective bulk parameters of 3-D periodic media, it can
also be adapted for the derivation of an equivalent boundary condition at the 2-D periodic array,
by means of a boundary layer analysis [4]. To describe the phenomena at both scales, two space
variables are introduced: the variable x of the macroscopic description (which coincides with the
usual space variable), and the variable y = ε−1x of the microscopic description. Differentiation is
modified according to ∇ = ∇x + ε−1∇y where ∇x and ∇y are the del operators related to x and y
respectively. Under the scale separation, the acoustic fields depend on both space variables, that is
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p(x,y) and v(x,y), and the equations of mass and momentum conservation take the form:

iωp = γPe
{

divx + ε−1divy

}
(v) ; iωρev =

{
gradx + ε−1grady

}
(p). (2)

The micro-variations of the fields are expected to vanish some distance away from the surface, where
the fields p(x,y) and v(x,y) approach the Long-Wavelength (LW) fields P (x) and V(x) which
depend only on the macro-variable x. From Eq. (2), it follows that:

iωP (x) = γPedivx(V) ; iωρeV(x) = gradx(P ). (3)

To achieve the scale transition between the LW field and the array, a Boundary Layer (BL), with the
pressure p? and the particle velocity v?, is developed in the vicinity of the surface. The BL fields
are superimposed upon the LW fields, that is p = P + p? and v = V + v?, to satisfy the locally-
periodic boundary conditions and remain confined near the resonant surface. Produced by the periodic
array while being forced by the LW field, the BL fields are locally Σ-periodic and modulated in the
plane S at the macro-scale. Consequently, their dependence on the two normalised space variables
is introduced in the form p?(xS ,y) and v?(xS ,y), where the index S denotes the projection on the
plane S. The BL fields are thus Σ-periodic and evanescent with respect to the micro-variable y while
the first variable xS is used to describe the macroscopic in-plane modulation. Subtracting Eqs. (3)
from Eqs. (2) and using the linearity of the problem, the BL fields p? and v? are found to satisfy the
following equations of mass and momentum conservation, where divSx and gradSx are the in-plane
divergence and gradient with respect to xS :

iωp?(xS ,y) = γPe
{

divSx + ε−1divy

}
(v?) ; iωρev?(xS ,y) =

{
gradSx + ε−1grady

}
(p?). (4)

Note also that vr(xS ,y) = R(P (xS) + p?(xS ,y)), where the operatorR depends also on the micro-
variable y. To recall that dependency, it will be denoted Ry in the following. Then, the fields are
expanded asymptotically in powers of ε as follows, where the order of the terms is indicated by
the bracketed superscripts. For instance, p?(xS ,y) = p?(0)(xS ,y) + εp?(1)(xS ,y) + ε2 . . .. Similar
expansions are performed for P,V, v? and vr. These asymptotic expansions are substituted in the
governing equations and the local boundary conditions. Terms of equal powers of ε are collected,
which results in a series of problems that can be solved successively in increasing order of powers of
ε. At the first two orders (leading order ε0 and first corrector order ε1), these problem read as follows:

ε0 :



iωρeV(0) = gradx P
(0);

iωP (0)(x) = γPedivx(V(0));
grady p

?(0) = 0;
divy v

?(0) = 0;
(V(0) + v?(0)) · n = 0 at Σ;

(V(0) + v?(0)) · nr = v
(0)
r · nr at Γr;

v
(0)
r = Ry

(
P (0) + p?(0)

)
at Γr;

v?(0) → 0 as y · n→∞;
p?(0) → 0 as y · n→∞;
v?(0) and p?(0) Σ-periodic with yS ;

; ε1 :



iωρeV(1) = gradx P
(1);

iωP (1)(x) = γPedivx(V(1));
iωρev?(0) = grady p

?(1);
divy v

?(1) + divSx v
?(0) = 0;

(V(1) + v?(1)) · n = 0 at Σ;

(V(1) + v?(1)) · nr = v
(1)
r · nr at Γr;

v
(1)
r = Ry

(
P (1) + p?(1)

)
at Γr;

v?(1) → 0 as y · n→∞;
p?(1) → 0 as y · n→∞;
v?(1) and p?(1) Σ-periodic with yS ;

(5)

3. Macroscopic description up to the first corrector order

The problem described by Eq. (5) is now solved. First, the BL quasi-static equilibrium grady p
?(0) =

0 combined with its evanescence leads to p?(0) = 0, that is the pressure is purely macroscopic at the
leading order. Then, the integration of the equations divy v

?(0) = 0 and divy V
(0)(x) = 0 of local
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incompressibility over the column C of air inside and above the unit cell (see Fig. 1(b)), leads to the
following relations when accounting for the periodicity and BL evanescence:∫

Γ

v?(0) · nΓ dΓy = 0 ;

∫
Γ

V(0) · nΓ dΓy = |Σ|y V(0) · n; (6)

where Γ = Σ ∪ Γr, with nΓ = nr at Γr and nΓ = n at Σ; and |Σ|y =
∫

Σ
dΣy is the y-integrated

surface area of the 2-D period Σ. Combining Eq. (6) with the integration of the local boundary
conditions over Γ leads to the following condition at S:

V(0) · n =
Q(0)

|Σ|y
; Q(0) =

∫
Γr

v(0)
r · nr dΓy = Y P (0) ; Y =

∫
Γr

Ry(1) · nr dΓy; (7)

where Q(0) and Y are the y-integrated acoustic flux and admittance produced by the resonator in the
unit cell. Equation (7) thus leads to the boundary condition V(0) ·n = −ΥP (0) at S with the effective
surface admittance Υ = −Y/|Σ|y. This leading order approximation agrees well with the measure-
ments when the scale separation is sharp [1]. To investigate the deviation from this description in
the case of the poor scale separation, the corrector order terms need to be considered. Using equa-
tions from the leading order description, supplemented by the momentum conservation iωρev?(0) =
grady p

?(1), the BL pressure p?(1) can be solved for. Since V(0) = −ΥP (0)n+ gradSxP (0)/iωρe in the
unit cell Ω, the boundary condition at Γr in Eq. (7) becomes:

nr · grady p
?(1) = nr · [ρecRy(1) + ρecΥn] iωP (0)/c− nr · gradSxP

(0) at Γr (8)

while n · grady p
?(1) = 0 at S. Consequently, the pressure p?(1) is linearly forced by iωP (0)/c and

gradSxP (0) and can be written in the form:

p?(1)(xS ,y) = −iωa(1)(y)P (0)(xS)/c− b
(1)
S (y) · gradSxP

(0) (9)

where the scalar field a(1)(y) and the vector field b
(1)
S (y), with the components b(1)

i∈{1,2} in the in-plane
directions ei∈{1,2}, are the elementary solutions of the following cell problems:

divy

[
grady a

(1)
]

= 0;
grady a

(1) · nr = −ρec [Ry (1) + Υn] · nr at Γr;
grady a

(1) · n = −ρecΥ at Σ;
grady a

(1) → 0 as y · n→∞;
a(1) → 0 as y · n→∞;
a(1) Σ-periodic with yS .

;



divy

[
grady b

(1)
i − ei

]
= 0;[

grady b
(1)
i − ei

]
· nΓ = 0 at Γ;

grady b
(1)
i → 0 as y · n→∞;

b
(1)
i → 0 as y · n→∞;

b
(1)
i Σ-periodic with yS .

(10)

The BL field −iωa(1)/c is radiated by the resonators in response to the unit LW pressure P (0) ≡ 1

while b
(1)
S is related to the micro-corrugation of the surface. a(1) depends on frequency due to the

frequency dependent response function Ry while b
(1)
S is purely geometrical. Equations for b(1) are

somewhat similar to those of the cell problems in homogenisation of periodic porous media [5].
Further, the weak formulation of Eqs. (10) over the column C of air inside and above the unit cell with
p̂ as the test-field reads:

Fy(a(1), p̂) =

∫
Γ

ρecp̂ [Ry (1) + Υn] · nΓ dΓy ; Fy(b
(1)
i , p̂) = −

∫
Γ

p̂nΓ · ei dΓy (11)

where Fy(p, p̂) =
∫

Γ
gradyp · gradyp̂ dΓy. Now, integrating the equation divy v

?(1) + divSx v
?(0) = 0

of mass conservation over the column C, accounting for the BL periodicity and evanescence, and the
local boundary conditions at Γ, the following equation is derived:

1

|Σ|y

∫
Γ

v?(1) · nΓ dΓy = −A
(1)
S
ρec
· gradSxP −

B(1)
S

iωρe
: gradSx

[
gradSxP

(0)
]

(12)

4 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

where : is the double contraction and the in-plane vector A(1)
S and tensor B(1)

S are defined as follows:

A
(1)
S |i∈{1,2} =

−1

|Σ|y

∫
Γ

a(1)nΓ · ei dΓy ; B(1)
S |i,j∈{1,2} =

−1

|Σ|y

∫
Γ

b
(1)
i nΓ · ej dΓy. (13)

Using Eq. (11) with a(1) or b(1)
i as the test-fields, the following relations are found:

A
(1)
S |i =

Fy(b
(1)
i , a(1))

|Σ|y
=

∫
Γ

ρecb
(1)
i

|Σ|y
[Ry (1) + Υn] · nΓ dΓy ; B(1)

S |ij =
Fy(b

(1)
i , b

(1)
j )

|Σ|y
. (14)

While the first relation establishes a link between the fields a(1) and b(1)
i , the expression for B(1)

S |ij
shows that the matrix B(1)

S is symmetric positive. The flux Q(1) produced by the resonator in the cell
Ω per unit surface of the 2-D period Σ is:

Q(1)

|Σ|y
=

1

|Σ|y

∫
Γr

v(1)
r · nr dΓy =

Y

|Σ|y
P (1) + µ(1)P (0) +

D
(1)
S
ρec
· gradSxP

(0) (15)

where µ(1) and D
(1)
S describe the response of the resonators to the boundary layer radiated and scat-

tered (due to micro-corrugation) by the resonators:

µ(1) =
1

|Σ|y

∫
Γr

Ry(−iωa(1)/c) · nr dΓy ; D
(1)
S · ei =

−1

|Σ|y

∫
Γr

ρecRy(b
(1)
i ) · nr dΓy (16)

Finally, the integration of the local boundary conditions over Γ leads to the following effective bound-
ary conditions at S, once the fields have been rescaled as V = V(0) + εV(1); P = P (0) + εP (1);
µ = εµ(1); DS = εD

(1)
S ; AS = εA

(1)
S and BS = εB(1)

S :

V · n = − (Υ− µ)P +
AS + DS

ρec
· gradSxP +

BS
iωρe

: gradSx
[
gradSxP

]
(17)

Equation (17) shows that the boundary condition is non-local, i.e. the normal velocity component on
the surface depends on the first and second in-plane gradient of pressure. When the resonators are
replaced by rigid scatterers, AS = DS = 0, and the contribution from the simple gradient vanishes.
Conversely the double-gradient contribution is the consequence of surface micro corrugation and
vanishes when the resonant surface is flat, e.g., for resonators positioned behind a rigid panel.

4. Surface array of slotted cylinders upon rigid surface

To illustrate the effects of the boundary condition described by Eq. (17) on the sound wave, con-
sider the resonant surface comprising of slotted cylinders arranged upon the rigid plane. The cylinders
are supposed to be long, so the two dimensional problem is solved. The Cartesian coordinate system
(e1, e3) is used, with e3 = n, and the origin O located at the rigid surface S . The cylinders have the
outer radius r, the opening S with the width e oriented at the angle α counted from On, the inner
radius r − e, the inner duct of width e and length d = χ(r − e/2) positioned at the periphery of the
cylinder, see Fig. 1(c). The centres of the cylinders are positioned at the points (n`, r), where ` is
the lateral period and n is an integer. The boundary Γr of the cylinder is assumed to be rigid, except
for the opening, which, in turn, is assumed sufficiently small for the radial particle velocity vo to be
uniform over it, that is vr ·nr = voΠS at Γr, where ΠS is the gate function equal to 1 over the opening
and 0 elsewhere on Γr. The velocity vo is related to the mean value of the pressure p acting at its
opening by vo = YS〈p〉 where 〈p〉 = |S|−1

∫
S
p dS and YS is the admittance of the opening. The

response function of the slotted cylinder and the normalised admittance ρecYS can be written:

Ry (p) · nr = YS〈p〉ΠS(y) ; ρecYS =
iσωoω

ω2
o − i2ξωoω − ω2

(18)
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where ωo =
√
K/M is the slotted cylinder resonance frequency, ξ � 1 is the loss factor, σ =

ρec|S|2/Mωo the admittance parameter, K the resonator’s modal stiffness and M = ρe|S|h is its
modal mass, with h being an effective neck length [1]. While Eq. (18) leads to the leading order
admittance Υ = −YS|S|/|Σ|, the following geometric elementary field g = a/[ρecYS] is defined. It
satisfies:

divy

[
grady g

]
= 0 ; grady g · nΓ = (|S|/|Σ|)n · nΓ − ΠS at Γ; (19)

along with the periodicity and evanescence conditions. Then, Eqs. (14), (16) and (18) lead to:

µ = ρecYSΥiω〈g〉/c and AS = ρecΥGe1 = −DS = −ρecΥ〈b1〉e1, (20)

where G = |S|−1
∫

Γr
gnr · e1 dΓ. Hence, for the resonant surface made of a single slotted cylinder

per period arranged upon the rigid surface, the flux produced by the resonators in response to the
corrugation field b1 is balanced by the macro-divergence of the BL radiation field a. As a result, the
in-plane gradient term in Eq. (17) does not contribute to the effective boundary condition. Finally,
since M = O(εΥ), the following Taylor expansion can be performed:

ρec (Υ− µ) = ρecΥ

(
1− iω〈g〉

c
ρecYS

)
≈ ρecΥ

1 + iω〈g〉
c
ρecYS

=
−iηΩoω

Ω2
o − i2ζΩoω − ω2

(21)

where, using Eq. (18) with ωo =
√
K/M and σ = ρec|S|2/Mωo with M = ρe|S|h:

Ω2
o =

K

ρe|S|(h+ 〈g〉) ; ζ = ξ/
√

1 + 〈g〉/h ; η =
σ|S|
|Σ| /

√
1 + 〈g〉/h. (22)

Hence, 〈g〉 is an apparent end correction for the array of resonators, which accounts for the mu-
tual near-field interactions between all the resonators and the rigid surface. Due to the presence of
the apparent end correction, the resonance frequency of the surface is lower than that of the sin-
gle resonator in free field. Parameters η and ζ are also reduced. Nevertheless, the normalised ad-
mittance value ρec (Υ−M) at the resonance frequency Ωo remains unchanged and is equal to that
ρecΥ(ωo) = σ|S|/2ξ|Σ| at the leading order. Hence, if the admittance matching with air is achieved
(critical coupling) according to leading order calculations, it will remain at the corrector order, but at
a lower frequency.

Now, the reflection of the incident plane wave P I = P I
0 e

ikx1 sin θ−ikx3 cos θ from the resonant surface
is studied, where θ is the angle of incidence counted from n, k = ω/c is the air wavenumber, and
xj = x · ej . Due to the Descartes Law, it gives rise to the reflected wave PR = PR

0 e
ikx1 sin θ+ikx3 cos θ.

The effective surface condition in Eq. (17) leads to the reflection coefficient R = PR
0 /P

I
0 in the form:

R =
cos(θ)− β(ω, θ)

cos(θ) + β(ω, θ)
; β(ω, θ) = ρec(Υ− µ)− ikBS sin2(θ). (23)

First, at normal incidence, θ = 0, the non-local contributions to the boundary conditions vanish
and the reflection coefficient tends to that of the surface with the effective normalised admittance
ρec(Υ−M). However, nonlocality becomes important at oblique and grazing incidence. If the slotted
cylinders are replaced by rigid scatterers (YS = 0), then β = −ikBS sin2(θ) is purely imaginary,
which results in the perfect reflection of the wave, |R| = 1, with a phase shift that depends on the
frequency and the angle of incidence.

To illustrate these effects, the resonant surface is now designed. First, note that the corrugation
related characteristic length BS depends only on the cylinders’ radius r and the spacing ` between
them. The cell problem for bS = b1e1 is solved numerically using the commercial software COMSOL
Multiphysics and results are shown in Fig. 2(a). The dependence of BS on r/` is not monotonous
and its maximum BS/` ≈ 0.24 is reached at 2r/` ≈ 0.68. To emphasize the effects from roughness,
this value is chosen in the design. The inset in Fig. 2(a) shows the color-map of the field b1 when
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Figure 2: Behaviour of the corrugated resonant surface comprised of periodically arranged slotted
cylinders with extended necks. (a) and (b) Numerical resolution of the cell problems related to the
characteristic corrugation lengthBS and apparent end-correction 〈g〉. (c) and (d) Comparison between
the leading order and corrector order results for the effective admittance of local reaction and plane
wave reflection coefficient.

BS is at maximum. It is indeed confined to the surface, consistently with the notion of boundary
layer, and nearly vanishes at x3 ≈ `. The field is antisymmetric with respect to x1, is zero at the apex
(x1, x3) = (0, 2r) and its maximum values are attained close to the surface.

The opening angle of the slot is chosen as e/r = 15o. The cell problem for g is solved numerically
using COMSOL Multiphysics and results are shown in Fig. 2(b). The apparent end correction 〈g〉 is
symmetric with respect to the orientation angle α. It increases with α, equal to 〈g〉/` ≈ 5.3% at
α = 0, quasi-constant in the range |α| < 45o with 〈g〉/` ≈ 5.8% at α = 45o and increases sharply for
α > 45o. For α = 135o, the end correction is equal to 〈g〉/` ≈ 19%. The insets show the field g/`
at α = 0 and α = 135o. It remains confined to the surface, consistently with the notion of boundary
layer, and nearly vanishes at x3 ≈ `. In the following, the orientation angle α = 135o is chosen.

The inner duct is now designed neglecting the inner end correction, consistently with the results
from the leading order description. In that case, the resonance frequency and the admittance parameter
are ωo = c

√
e/V d and σ =

√
V/de, with V = π(r − e)2 being the volume of air in the inner cavity.

The resonant surface is designed to achieve a scale parameter εo = `ωo/c ≈ 0.8 at the resonance,
to emphasize the corrector contribution while keeping εo < 1. That gives the angular neck length
χ = d/r = 135o. The resonant surface is also designed to operate at the resonance frequency equal
to 1 kHz according to the leading order description, which leads to ` = 4.4 cm, r ≈ 1.5 cm, e ≈ 4 mm
and d ≈ 3.05 cm. To account for the inner end correction, the resonator is modelled using COMSOL
Multiphysics, which gives the resonance frequency ωo/2π = 959 Hz and the admittance parameter
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σ ≈ 1.8. The modal pressure field inside the resonator is shown in Fig. 2(c). The loss factor ξ = 4%
is chosen. The effective leading order admittance ρecΥ is compared with the corrected admittance
ρec (Υ− µ) in Fig. 2(c). As expected, the corrector µ leads to shift the effective admittance to lower
frequencies, with the resonance frequency going down from 959 Hz to 852 Hz.

Figure 2(d) shows the reflection coefficient for the incidence angle θ = 60o computed using
either the leading order admittance or the effective surface condition accounting for the correctors.
Qualitatively, both lead to: (1) sound absorption at their respective resonance frequency; and (2) a
phase shift during reflection from the resonant surface. Alongside with lower resonance frequency,
accounting for correctors leads to a slightly higher absorption coefficient value at resonance (|R| ≈
0.58 with the correctors against |R| ≈ 0.6 at the leading order) and an additional phase shift due to
corrugation, with a phase difference of about π/4 at 2 kHz.

5. Conclusion

The properties of the corrugated resonant surface have been described in terms of an effective
boundary condition by means of two-scale asymptotic homogenization and boundary layer analysis.
While an admittance of local reaction is found at the leading order, a non-local boundary condition is
derived when the correctors are accounted for. The correctors are expected to become significant when
the scale separation is poor. The model developed here has been illustrated in 2-D for the array of
slotted cylinders with an extended neck, but the analytical results are valid for 3-D geometry, without
any assumptions about the nature of the resonators and LW field, except for the scale separation.
In particular, the non-local contribution should lead to anisotropic effects in 3-D. Further studies
will concern the effects from correctors for the surface with several resonators per period and 3-D
anisotropic resonators arrangement. The homogenization results will also be compared with those
obtained using alternative techniques, e.g. multiple scattering theory. The results are useful for the
design of corrugated resonant surfaces, where the corrugation/radiation coupling could be used to
tune the resonance frequency by simply changing the positioning of the resonators. This work has
been supported in part by EPSRC UK grant EP/K037234/1 and COST Action 15125 DENORMS.
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