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Underwater targets classification using traditional features suffers significant performance loss
under the mismatched noisy condition when the training data and the testing data are measured
at totally different noise levels. We consider to denoise the measured signals by the sparse rep-
resentation. However, the real acoustic signals for underwater targets are too complicated to be
represented by a fixed simple dictionary, we suggest to learn the representative dictionary from
the data. To simultaneously learn the dictionary and discriminative sparse features, the under-
lying structure that sparse patterns are similar for sample data from the same target and differ a
lot among different targets is exploited by using the label consistent dictionary learning method.
The resulted sparse coefficients are then used as the input features of the Support Vector Ma-
chine (SVM) for target classification. Experimental results using real underwater acoustic dataset
demonstrate that the proposed noise robust feature outperforms the traditional ones under the mis-
matched noisy condition.
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1. Introduction

Underwater target classification has received much attention recently in underwater acoustic signal
processing community. Research in this field focuses on the underwater target feature extraction
and classifier optimization. Traditional features for underwater targets are extracted from the signal
spectrum, such as the zero-crossing rate, the frequency bandwidth, the spectral centroid, line spectrum
and the energy of the spectrum in the low frequency range [1, 2]. Those features always represent
certain targets physical information, for example, the number of the blades, the rotating velocity of
the propellers, and so on, hence are typical and useful for underwater target classification. However,
the spectrum based features are vulnerable to noise and the time variant channel distortion. Another
prevailing feature for acoustic signal stemming from the automatic speech recognizers is the mel-
frequency cepstral coefficients (MFCC)[3, 4, 15, 16]. It is found that MFCC outperforms the above
mentioned physical-related features [7, |8] in classification due to its powerful imitation of the mask
effect and the frequency responses of human ears by a set of auditory based Mel filters. What’s more,
since the discrete cosine transformation is applied on the cepstrum in MFCCs, it has the advantage
of high frequency channel distortion suppression. However, a high level background noise would
severely depress the discriminating ability of both the traditional physical-related features and the
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MFCCs. It is probably the case when the training and testing data are measured at totally different
noise levels, since the underwater environment is very complicated and time varying. Under such a
background noise mismatched condition, the correct rate of classification would drop dramatically.

Sparse representation (SR) finds a parsimonious representation of the signal as a linear combi-
nation of a few atoms from an over-complete dictionary, which has an advantage of effective sig-
nal denoising. The sparse coefficients extracted by SR are representative and noise robust features
which outperform the traditional ones and the MFCC in noisy environments[9]. However, typical real
acoustic signals for underwater targets are always too complicated to be represented parsimoniously
by a fixed simple dictionary, we consider to learn the representative dictionary and the corresponding
sparse features of the targets from the data. Furthermore, it is observed that sample data share similar
sparse supports for the same target and exhibit totally different ones for different targets. Such an
observation can be properly modeled by block sparse structure with each nonzero block being rep-
resentative to one target. Those block structures when applied are capable to reduce the within-class
covariance and promote the indiscriminateness of sparse features. Since multiple measurements with
labelled samples are available, the discriminative sparse features and the representative dictionary
can be simultaneously learned by a dictionary learning method, named the Label consistent K-SVD
(LC-KSVD) [10]. The low-frequency band of the spectra of the real data can be used as the inputs of
the LC-KSVD to extract the sparse features with block sparsity. Experimental results using real un-
derwater target dataset demonstrate that the proposed noise robust feature outperforms the traditional
ones under the mismatched noisy condition.

2. Sparse Feature and Dictionary Learning by LC-KSVD

The spectra of most underwater targets have energy concentrated in the low-frequency range,
which are typically composed by both continuous and line spectra reflecting important target infor-
mation. However, they can be easily contaminated by noise. We consider instead to extract the noise
robust sparse features. Unfortunately, as illustrated by the spectrograms of three different underwater
targets in Fig. [T] not every target has a sparse spectrum. We have to learn a representative dictionary
from the data itself in order to use the sparse representation. What’s more, note from Fig. [[] that each
target has its unique spectrum range and the spectra of samples measured from the same target show
a great similarity. This fact motivates us to learn the sparse features and the representative dictionary
simultaneously by LC-KSVD method, since the a block sparse structure is encouraged in LC-KSVD
to model and describe the targets’ specifications where sparse representations of samples from the
same target share similar supports. As we will shown later in the experiments part, such underlying
structure when applied can

Note that if the spectra are directly used as the inputs to the LC-KSVD, an over-completed dic-
tionary with huge dimensions will be learned, which will be computational complicated and time-
consuming. We suggest to apply the Principal Component Analysis (PCA) [11] to reduce spectra to
a smaller dimension before being used to extract the sparse feature by the LC-KSVD. In this way, a
dictionary with reasonable size will be learned efficiently. When the PCA is applied, the degree of
cumulative contribution against the dimension of the spectra can be calculated which is given in Fig.
As seen from Fig. [2| the first 140-dimension of the principal components represents 90.05% of the
feature energy. Therefore, the first 100-dimension of the principal components are preserved as the
inputs to LC-KSVD for dictionary learning.

LetY = [yl, Yo, - ,yN} be a set of preserved principal components after PCA. According to

LC-KSVD, an objective function is constructed as follows:
(D,W,A, X)=arg _min_|Y - DX|;
, DW,A.X ) . (1)
+al|lQ@ —AX|;+B8|H - WX|; stVi, |z, <T

where D and X are the representative dictionary and the corresponding sparse feature, respectively;
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Figure 1: The spectrograms of 3 kinds of underwater targets. Samples indexed from 1 to 180 belong

to first class; Samples indexed from 181 to 320 are measured from class 2 and the rest comes from
class 3.

0

The Degree of Cumulative Contribution

Dimension of the Input

Figure 2: The degree of cumulative contribution against the dimension of the spectra

ICSV24, London, 23-27 July 2017 3



ICSV24, London, 23-27 July 2017

Y — DX ||2 calculates the data fitting error; Block modeling error of the sparse feature is given by
1Q — AX |, withQ = [g1---qn],qi =[¢} -~ ¢F]" =[0...1,1...0]" € R* and A being a linear
transformation matrix; label consistent regularization is give by | H — W X ||} with H = [hy - - - hy]
the class labels of the input signals; and « and (3 control the relative contributions of the corresponding
terms. The sparsity is imposed by the term ||x;||, < T, where ||.||, is the [o-norm and T is the
maximum sparsity allowed (corresponding to the number of the nonzeros in each x;). Further more,
the block sparsity is imposed by the term ||Q — AX ||§, which restricts the sparse features to be
discriminative by setting elements in g; to be one in a block-wise manner. By minimizing the above
objective function in Eq.(I)), the learned sparse representation dictionary D and the sparse coefficient
matrix X with block structure can be learned iteratively. The detailed learning procedures can be
found in [[10]].

3. Numerical Experiments

Real data experiments with 3 different underwater moving targets are conducted to test the pro-
posed sparse features with block structure. For each class, 600 clips each with a duration of 1s are
collected. The dataset is split into six folds for cross validation (CV). Five folds are used for training
(1,500 clips) and one for testing (300 clips). We add additional white Gaussian noise into the testing
data to mimic the noisy mismatched conditions with the signal to noise ratio (SNR) of the testing data
from -5 dB to 15 dB, where we treat that the original data set is noiseless. We calculate the spectrum
for each clip of the data. And PCA is applied on the spectra in low frequency range from 10 Hz to 1
KHz to reduce the feature to a relatively low dimension of 140. The preserved principal components
are used as the final input of the LC-KSVD to learn the representative dictionary. To predict the label
of the testing data, the learned dictionary is used to extract the sparse features firstly and then the
support vector machine (SVM)[12] is applied for classification. The traditional features of MFCC
and the spectra in low frequency range from 10 Hz to 1 KHz are also tested as a comparison. MFCCs
are extracted form the spectra with 256 ms Hamming window and then passed by a voicebox of 26
Mel-filters. The first 13 dimensions of the filter are preserved as the final MFCC feature, since it is
found to yield the best classification results. The allowed maximum sparsity in LC-KSVD is set to be
12 in our experiments, and the regulation parameters « and /3 are set empirically as 1.

The block structure of the extracted sparse feature is indicated in Fig. [3] where most of the nonzero
coefficients of the sparse features for different targets distributed in different blocks and features of
the same target always share similar support pattern both for training and testing data. Fig. 4] shows
the final correct recognition rates using different features against the levels of the SNRs of the testing
data. As the SNR increases, all the correct recognition rates increase. Among which, our proposed
features yield highest the correct recognition rate especially when the SNR is from —3 to 9 dB.

4. CONCLUSION

In this paper, we propose to use the LC-KSVD method to learn the discriminative sparse features
and the representative dictionary for underwater targets classification under mismatched noisy condi-
tions. PCA is firstly applied to the targets spectra in low frequency band to reduce the dimensionality.
And the preserves principle components are used as the rough feature to learn the dictionary and the
block sparse discriminative features. We demonstrate by numerical experiments with real underwater
dataset that the sparse features with block structure learned by LC-KSVD are effective for underwater
target classification under the mismatched noisy conditions.
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Figure 3: Illustration of the sparse codes obtained by LC-KSVD algorithm. (a) training signals; (b)
testing signals. For training data in (a), samples indexed from 1 to 500 belong to first class; samples
indexed from 500 to 1000 are measured from class 2 and the rest comes from class 3. For testing
data in (b), samples indexed from 1 to 100 belong to first class; samples indexed from 100 to 200 are
measured from class 2 and the rest comes from class 3.
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Figure 4: Classification rate using three different features against the levels of SNR differences be-
tween the training and testing data.
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