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A nonlinear energy sink (NES) is an effective device to reduce structural vibration while 
keeping the system frequency unchanged. However, a nonlinear energy sink may leads to 
complex dynamics such bifurcation and chaos. The investigation treats bifurcation and chaos in 
forced vibration of a harmonically excited linear structure coupled with a nonlinear energy sink. 
The bifurcations with the varying NES mass and NES nonlinear stiffness are numerically 
examined via the Poincaré map. Dynamical behaviours are identified by phase trajectories 
amplitude spectrums and Poincaré maps. The bifurcation diagrams reveal that the responses of 
the structure and the energy sink are periodic except a few bursts of chaotic motions. In addition, 
the dynamic behaviours of the structure may be different from those of the nonlinear energy 
sink for appropriate parameters. 
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1. Introduction 

A nonlinear energy sink is an effective device to reduce mechanical and structural vibration 
passively [1,2]. Recently, much attention has been paid to suppress forced vibrations of structures 
subjected to external excitations [3-18]. The structures were modeled as single-degree-of-freedom 
oscillators [3-8,11], two-degree-of-freedom linear oscillators [9,10,17,18], linear strings [12,13], 
linear beams [14,15], and single-degree-of-freedom nonlinear oscillators [16]. A simplest model of 
a nonlinear energy sink is an essential nonlinear oscillator consisting of a small mass, a cubic 
stiffness and a linear damper [3-6, 8,9,11-18]. 

Most available investigations focused on periodic steady-state responses [3,5,7-9,11-18]. In 
addition to experimental works [3,4,11,18] and numerical simulations[3,7,10,14,16-18], 
approximate analytical methods are a powerful approach to predict the steady-state responses by 
yielding amplitude-frequency response curves and examining their stabilities[3,7-9,11-16]. Most 
used approach is the complexification averaging method [3,5,7,9-11,14-16]. Besides, a mixed 
multiple scale/harmonic balance algorithm was proposed and applied [8,12,13]. The method of 
harmonic balance is also used to analyze the periodic steady-state response [7]. In addition to 
periodic motions, there were some numerical simulations on quasi-periodic motions [4-6,10,13] and 
the complexification averaging method was applied to investigate quasi-periodic motions [4,5,10]. 

The cubic stiffness in a nonlinear energy sink creates new nonlinearity in the coupled system of a 
structure and the energy sink. The nonlinearity may change dynamics of the system qualitatively as 
well as quantitatively. Specifically, the nonlinearity may lead to new complex dynamics such as 
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chaos. The possibility of chaotic motion was initially revealed in [5]. It is well known that the route 
to chaos is essential and significant to understand nonlinear behaviors of a system. However, the 
route to chaos has not researched for a system composed by a structure and a nonlinear energy sink. 
To address the lack of researches in this aspect, the present work explores the route to chaos by 
examining bifurcations in the Poincaré maps regarding to two key design parameters of a nonlinear 
energy sink, namely the mass and the nonlinear stiffness. 

The manuscript is organized as follows. Section 2 presents a basic model of a structure with a 
nonlinear sink. In Section 3, bifurcation diagrams are numerically calculated. In Sections 4, chaos is 
numerically identified. Section 5 ends the manuscript with concluding remarks. 

2. Formalizations  

Consider a harmonically excited structure with a nonlinear energy sink. The structure is model as 
a linear single-degree-of-freedom system with stiffness k1, linear damping coefficient c0, the mass 
m0 and excited by the periodic force F(t)=Acos(t). The nonlinear energy sink consists of m, cubic 
stiffness k, linear damping c. Figure 1 shows the model. 

 
Figure 1: A linear oscillator with a NES. 

Measured from their static equilibriums, the displacements of masses m0 and m are denoted as x0 
and x, respectively. Newton’s second law yields the dynamic equations of the system 
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3. Bifurcation diagrams 

This section examines nonlinear behaviours of the system based on the numerical integrations 
calculated via the Runge-Kutta scheme. Choose the parameter values as m0=24 kg, k0=20 kN/m, c0= 
1.2 Ns /m, c= 1.2 Ns /m, A=10N, and =28.8675 rad/s. Two key design parameters of the 
nonlinear energy sink, namely, mass m and cubic stiffness k are considered as a varying parameter 
respectively. Bifurcations in the Poincaré maps are employed to demonstrate the effect of the two 
parameters on dynamical behaviours. The displacement components in the Poincaré maps are 
focused. The first 4800 points in the Poincaré maps are calculated for fixed parameters, and only the 
last 200 points are plotted in bifurcation diagrams to eliminate transient responses. 

The change of mass m is focused with fixed k=10000 kN/m3. Figure 2 depicts the displacements 
components in the Poincaré maps of the structure response and the nonlinear energy sink response. 
The numerical results show that the responses of the structure and the energy sink are periodic 
except a few bursts of chaotic motions. Such chaotic motions are dynamic complexity induced by 
the nonlinear energy sink, because linear structures behave periodically only. Figure 3 presents 
bifurcation diagrams of the displacement components in the Poincaré maps  of the structure and the 
energy sink for the change of cubic stiffness k for m=0.5kg. The structure and the energy sink 
vibrate periodically except for the bursts of chaos for the small and the large stiffness k. The 
amplitude of the periodic motion of the structure increases with the stiffness, while that of the 
energy sink remains almost unchanged. 
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Figure 2: The bifurcation diagrams of the structure and the NES responses for varying m. 

 
Figure 3: The bifurcation diagrams of the structure and the NES responses for varying k. 

4. Periodic and chaotic motions 

For the periodic responses, the vibrations of the structure and the energy decreases with the 
increasing energy sink mass, except for the very small energy sink mass. It should be remarked, the 
response of the energy sink seems more complex than that of the structure, as shown in Figs. 2. Fix 
k=10000 kN/m3. Figures 4 and 5 show that the structure vibrates periodically but the energy sink 
chaotically for m=0.2496kg. Figures 6 and 7 show that the structure is with period-1 motion while 
the energy sink period-2 motion, for m=0.3384kg, and the fact implies the occurrence the period-
doubling bifurcation for the energy sink, also shown in Fig. 2 Figures 8 and 9 show vibrations of 
both the structure and the energy sink are chaotic. In above-mentioned figures, chaos is identified 
by the time history, the amplitude spectrum, the phase portrait, and the Poincaré map, while 
periodic motion is demonstrated by the time history with its local enlargement, the phase portrait, 
and the Poincaré map. 
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Figure 4: Periodic vibration of the structure for m=0.2496kg (a) the time history, (b) the enlargement of the 
time history, (c) the phase portrait, (d) the Poincaré map. 

 

 

Figure 5: Chaotic motion of the energy sink for m=0.2496kg (a) the time history, (b) the amplitude spectrum, 
(c) the phase portrait, (d) the Poincaré map. 
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Figure 6: Period-1 motion of the structure for m=0.3384kg (a) the time history, (b) the enlargement of the 
time history, (c) the phase portrait, (d) the Poincaré map. 

 

 

Figure 7: Period-2 motion of the energy sink for m=0.3384kg (a) the time history, (b) the enlargement of the 
time history, (c) the phase portrait, (d) the Poincaré map. 
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Figure 8: Chaotic motion of the structure for m=0.72kg (a) the time history, (b) the amplitude spectrum, (c) 
the phase portrait, (d) the Poincaré map. 

 

 

Figure 9: Chaotic motion of the energy sink for m=0.72kg (a) the time history, (b) the amplitude spectrum, (c) 
the phase portrait, (d) the Poincaré map. 

For different cubic stiffness k with fixed m=0.5kg, periodic motions of the structure and the 
energy sink are respectively shown in Figs. 10, and chaotic motions can be found in Figs. 11.  
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Figure 10: Periodic vibration of the structure for k=5600 kN/m3 (a) the time history, (b) the enlargement of 
the time history, (c) the phase portrait, (d) the Poincaré map. 

 

 

Figure 11: Chaotic motion of the energy sink for k=14400kN/m3 (a) the time history, (b) the amplitude 
spectrum, (c) the phase portrait, (d) the Poincaré map. 

5. Conclusions 

The investigation treats steady-state response in forced vibration of a periodically excited linear 
structure coupled with a nonlinear energy sink. The bifurcations are numerically examined via the 
Poincaré map. Phase trajectories, amplitude spectrums and Poincaré maps are used to identify 
dynamical behaviours. The investigation demonstrates that a nonlinear energy sink may result in 
chaotic motion of the structure and the nonlinear energy sink and the dynamical behaviours 
bifurcate with the varying mass the cubic stiffness of the nonlinear energy sink. 
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