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A TWO-WAVE TYFE MODEL FOR FESTIMATING THE DYRAMICAL RESFONCE OF
FRAME STRUCTURES

L.A. WALKER AND M.J. GREENWOOD
CIVIL ERGINEERING DEPARTMENT, UNIVERSITY OF LEEDS

As part of a scheme aimed at the reduction of flanking vibration in buildings
by active damping techniques one derivative method of predicting the modsl
resonances of framed structures utilised a method of wave analysis. Earlier
work by Budrin, Nikiforov, Kihlman, and others had established the need to
include. at least both fluxural and longitudinal wave types at intersecting
nodes either of plates or beams. Such analyses were restricted to single
junctions, and the present work follows the study by Bhattacharya, Mulhollana,
and Crocker {1} who calculated energy flow via a "two-joint" model where a
pair of infinite plates were connected by e tie bar. The simplification
arising from the absence of reflected travelling components or near fields at
infinity is acceptable where the concern is with averaged statistical flow.
However in the present report, related to damping methods, some prediction of
resonances in a finite structure is important, and reflected wave components
must be generally included.

Model of frame

Figure (1} shows the rectangular space frame driven by a harmonic forcer of
amplitude F at the node formed by elements 1, 3, and L. Transverse flexural
waves are present in the two principal planes of the assumed square section,
whilst longitudinal wave components ere gencrated in axial directions.

If vi and wj are the transverse displacements in y and z directions for the ith
element member, then the standard wave equation solutlons for forward and
reflected waves are given, on dropplng the term e~JWt

vi = Aieaklxl +- Bie“\]klxl + Cie_kl i + Fie‘(k]_ll‘k))ﬁl)

in eight equations

wi = IieJkixi + Jiéjklxl+ Lie-kixi + Mie-(kili—kixi) in eight equations

For longitudinal displacements in the it} member

uj = Gierixi + Hie_Jplxl in eight equations

where wave numbers k; = w/Cp; Pj{ = w/CL, and x is generally an aximl coordinate.

The eighty complex wave coefficients Aj ete are obtained by solving the
sufficiently available equations given by the element-end conditions of

(a) Continuity of linear displacement {b) Angular displacement

(e} Equilibrium of axial and shear forces in each axial direction,

(@) Equilibrium of bending moments about each axis. Conditions (c) end {d)
discount inertias at the nodes, as does the displacement solution v; ete
discount beam rotaticnal inertia.
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In the case of the joint (1, 4, 3}, Figure 2, from which a corner cube has been
removed (Figure 2} to show the sign convention adopted, the above conditions
give:

(e} Displacements: uj; = =wyj U] = -Wag3u3 = Vi3 Uy = Wyj Wy = —¥p) 0y = =¥y,
dwy; _ dwy P . e
{v) Angles: TR T plus two similar equations for remalning axes.
1 3

E I;d%; EyI,ddvy, ., E3A3zduy _ = plus two further equations with
{c} 141 + '+ ALK R
dx3i dx, ¢ dxg * zero external force.

' Eylzddve | B I,d%v, _ Tidv;/dx; .
+ - = .
{d) E;;} T2 EE%7EIT' 0, plus two further equations
Ty is the torsional constant for member 1, and in the last term v; and w; are
only relatable via a mutual dependence on the coordinate xj.

A two dimensional model (first used as an experimental confirmatory excercise)
can be used to illustrate the sign convention used.

Of this set of fifteen relationships per mode, typicel relationships are:

Type (a) G, + Hy + I, + J, + L, + Mee 543 =g
Type (b) §T, - j0) - Ly + Mye "33 - Iy 4 Iy 4 Ly - M *M3 =0

. n "klll N . _khlt.
Type {e) —3I) + jJy - Ly + Mye - JAy, + jBy - C, + Fe

+ j {Apy/Ik; )(Cy-H3) = - F /{ETK;3)
with similar relationships of type (d}.

A further six relations based on zero slope and deflection at one grounded end,
of which five only are necessary, denate twenty equations per node, to provide
eighty in all for a solution of the full set of wave coefficients Aj etec.

A further 16 wave coefficients due to torsional wave presence have been
excluded since the upper limit to the computing viebility was already near.

The matrix size was condensable to 68 square by eliminating 12 chosen coeffi-
cients in terms of others, whose solution allowed back substitution for the
eliminated terms.

Comments: In this approach, the solution for unknown wave coefficients provides
individual displacements vi, wi, uj for any location x via the wave equatian.
This contrasts with the more usual discretised stiffness/mass matrix solution
where eigenvalue, eigenvector derivation will give the forced amplitudes via a
normal mode solution only at the nodes. In the presented method the responsc
vil(x), vy{x),is computed over a sweep of frequencies which alsoc defines the
natural frequencies vian the resonance infinity values.

In contrast with the stiffness/mass matrix approech which must include
transformations from local element to global system coordinates, the presented
method retains only local element descriptions since the effective correlation
of element axes is msintained in the continuity of displacement and angle of the
end conditions {a) and (b).
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One calculated result is given below for the draving poirt (1, b, 3) in the
ecese of stsal rig of hollow irch-square section with dimensions 1 1.5m,
ll‘ 2.’.’:,15 l._:;l"l.

(1) M.C. BELTTACHARYA, K. HKULHOLLAKD apd M.J. CROCHER 1971 Prasagation of
sound e ¥ by vibration transmission via structural junctions.
Jl Sound and Vibration 18{2), 221.
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