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As part of a scheme aimed at the reduction of flanking vibration in buildings
by active damping techniques one derivative method of predicting the modal
resonances of framed structures utilised a method of wave analysis. Earlier

work by Budrin, Hikiforov, Kihlman, and others had established the need to

include. at least both fluxural and longitudinal wave types at intersecting
nodes either of plates or beams. Such analyses wererestricted to single
junctions, and the present work follows the study by Bhattacharya, Mulholland,
and Crocker (1) who calculated energy flow via a "two-joint" model where a
pair of infinite plates were connected by a tie bar. The simplification
arising from the absence of reflected travelling components or near fields at
infinity is acceptable where the concern is with averaged statistical flow.
However in the present report, related to damping methods, some prediction of
resonances in a finite structure is important, and reflected wave components
must be generally included.

Model or frame

Figure (l)_shows the rectangular space frame driven by aharmonic forcer of
amplitude F at the node formed by elements1, 3, and '4. Transverse flexurol
waves are present in the two principal planes of the assumed square section,
whilst longitudinal wave components are generated in axial directions.

If vi and vi arethe transverse displacements in y and z directions for the ith
element member, then the standard wave equation solutions for forward and

reflected waves are given, on dropping the term e‘J‘“

vi = AieJklxl + Bic-Jkixi 4 Cie_kixi + Pie—(kili_ki‘i) in eight equations

wi = Iie‘mixi + die—$911+ Lie-kixi + ilie-(kili'kixi) in eight equations

For longitudinal displacements in the i‘rh member

ui = Gierixi + Hie—JPJX) in eight equations

where wave numbers Xi = m/Cp; Pi = m/CL and x is generally an axial coordinate.

The eighty complex wave coefficients A1 etc are obtained by solving the
sufficiently available equations given by the element-end conditions of
(3) Continuity of linear displacement (b) Angular displacement

(c) Equilibrium of axial and shear forces in each axial direction.
(d) Equilibrium of bending moments about each axis. Conditions (c) and (:1)
discount inertias at the nodes, as does the displacement solution vi etc

discount beam rotational inertia.
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In the case of the joint (1, h, 3). Figure 2, from which a corner cube has been
removed (Figure 1) to show the sign convention adopted, the above conditions
give:

(a) Displacements: u] = W“; ul -w3;u3 = v“; us= w}; u., = -v]; u.‘ = -V3.

(b) Angles: % = % plus two similar equations for remaining axes.
l 3

E I d3w‘ EhIgdZV - E du _ - plus two further equations with
(c) l l —L,-* — + 3—1 _ -F

dxi dx.~ dxa ’ zero external force.

‘ E313d3v Eclndzvh _ Tldv Idx1 _
(d) dxg + Ez- dTibdx—l — 0, plus two further equations.

T1 is the torsional constant for member 1, and in the last term v1 and w) are
only relatable via a mutual dependence on the coordinate X}.

A two dimensional model (first used asan experimental confirmatory excercise)
can be used to illustrate the sign convention used.

of this set of fifteen relationships per node, typical relationships are:

Me (a) G, + H1 a I. + .1b + L.. * Mus-m“ = o
. . -k l t ‘

Type (b) 31, -JJI -L, +M1e 3 3-JI3¢JJ3+L3-M3e

Type (C) -jll + jJ) - L‘ + M‘s-k‘lI — jA.~ + jB“ — C“ 1- Fe

+3 (Aplllkl3)(63-H3J = — i Henna)
with similar relationships of type (d).

'k 31 3

—kulg
=0

A further six relations based on zero slope and deflection at one grounded end,
of which five only are necessary. donate twenty equations per node, to provide
eighty in all for a solution of the m1 set of wave coefficients A; etc.
A further 16 wave coefficients due totorsional wave presence have been
excluded since the upper limit to the computing viability was already near;
The matrix sizewas condensable to 66 square by eliminating 12 chosen coeffi-
cients in terms or others, whose solution allowed back substitution for the
eliminated terms.

Comments: In this approach, the solution for unknown wave coefficients provides
individual displacements vi, wi, llj for any location x via the wave equation.
This contrasts with the more usual discretised stiffness/mass matrix solution
where eigenvalue, eigenvector derivation will give the forced amplitudes via a
normal mode solution only atthe nodes. In the presented method the response
vi(x), w](x),is computedover a sweep offrequencies which also defines the
natural frequencies via theresonance infinity values.

In contrast with the stiffness/mass matrix approach which must include
transformations from local element to global system coordinates, the presented
method retains only local element descriptions since the effective correlation
of element axes is maintained in the continuity of displacement and angle of the
end conditions (a) and (b).
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One calculated result is given below for the drawing point (1. h, 3) in the
l rig of hollow inch—square section with dimensions 1' 1.5m,

  

     
[1) 1-1 " LT'I‘I‘CHARYA, 1:. ‘rihLHOLLAl‘u'D and M.J. 'ZOCFER 1971 Propagation of

s by vibration transmission vja structural junctions.
J Vibration 18(2), 221.
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