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1. INTRODUCTION

The application of the constrained least rean square (LMS) algorithm to adaptive beamforming
and its analysis has been studied by many authors [1]-[4]). The algorithm updates the array
weights employing a noisy estimate of the required gradient. In its usual form an estimate of the
required gradient is made by multiplying the array output with the receiver outputs [1], [2]. This is
referred 1o as the standard algorithm throughout this paper.

The structured gradient algorithm studied in {4], exploits the structure of the array correlation
matrix (ACM) for estimating the gradient. For a linear array of equispaced receivers, immersed in
a homogeneous noise field, the ACM has a Toeplitz structure, i.e. the entries along each diagonal
are equal. The noisy estimate of the ACM, used in the standard algorithm to calculate the gradient,
is not constrained to have this structure. The structured gradient algorithm uses an estimate of the
ACM constrained to have the same structure as the exact ACM. The standard LMS algorithm and
the structured gradient algorithm are useful when all the receiver outputs are accessible. In the
absence of that, perturbation algorithms [3}, [5] are used to estimate the required gradient by
perturbing the array weights and measuring the output power of the system.

Though, all these algorithms employ different methods of gradient estimation, they all have one
feature in common. At the (n+1)st iteration of the weight iteration they all use samples available
after nth iteration to estimate the gradient. None of these algorithms utilise the previous samples
which are available. In this paper we study two LMS algorithms which make use of the previous
available samples to estimate the required gradient to update the array weights. The first algorithm,
referred to as the recursive LMS algorithm, is applicable for a general array whereas the second
algorithm, referred to as the improved LMS algorithm, exploits the Toeplitz structure of the ACM
and can only be used for an equispaced linear array.

2. PRELIMINARY BEAMFORMING CONSIDERATION

Consider a linear array of L equispaced, omnidirectional elements immersed in the far field of
sinusoidal point sources. Let an L dimensional vector X(n} represent the L outputs of the array,
and an L dimensional vector W represent the weights of an element space beamformer.

Let W be the solution of the following beamforming problem:

mm&lmzc wHRW 2.1
subject to WHSg = 1 (2.2)
where Sy is the steering vector associated with the look direction and R is the ACM.
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The complex vector W, thus represents the L optimal weights of the beamformer which minimizes
the mean output power and has unity response in the look direction.

2.1 Standard LMS Algorithm
A real time constrained algorithm for determining the optimal weight vector W is

W(n + 1) = POW(n) - pe(W(n)) + Eofé‘:SO

(2.3)
where P is a projection operator and is given by
H
P=1-8§ S /L '
00 : (2.4)

W(n+1) denotes the new weight vector cbmputed at (n+1)st iteration, |1 is a positive scalar which
controls the convergence characteristics of the adaptive algorithm and g(W(n)) is an unbiased
estimate of the gradient of WH(n)RW(n) with respect to W(n).

The gradient of WHmRW(n) with respect to W(n) is given by
H .
V'f.vﬂ RW|w = w(n) =2RW(n) | (2.5)

When all receiver outputs are accessible, the usual estimate of the gradient is made by multiplying
the array output with the receiver outputs, that is, '

B(W(n)) =2X(n + 1}y*(W(n)) _ (2.6)

For a given W{n) the estimate given by (2.6) is unbiased.

3. RECURSIVE LMS ALGORITHM
Let g (W)(n)} denote the estimated gradient by recursive method for a given W{n) and be
defined as

g (W(n)=2R (n+1)W(n)
R

where
R(n+1) = [n R (n) + X(n+1) XH@+1)] / (n+1) (3.2)
It follows from (3.2) that "M R(n) = R.
aa

R
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Thus

(3.3)
n—yee

lim o (W(n))=2R W)
R

that is, the gradient estimate approaches the rue gradient as n—ee.
The following resull far the covarianee of the gradient is established in [6]. The resultis valid for
large n, such that R(n)=R.

Result 3.1: Let Vg (W.(n)) denote the covariance of the gradient estimate defined by (3.1) and

R
(3.2) for a given W(n). It {X(k)} is an independent and identically distributed (iid) complex
Gaussian sequence, then

Ve (W(n)=—2— W'(n) R Wn) R
R

{(n+1) (3.4)

[t foliows from (3.4) that the covariance of the estimated gradient by recursive method decreases as
iteration number increases and (n+1)2 times less than the covariance of the gradient estimated by
(2.6), that is, by the standard method. The covariance of the gradient estimated by the standard

method, Vg (W(n)), is given by [5]
S

Vg (W(n))= 4&“(11) R W(ny R
S (3.5)

The covariance of the estimated gradient plays an important role in determining the amount of the
weight covariance which in turn affects the misadjustment. It is shown in |7] that the component
of the covariance of the gradient which affects the weight covariance is P Vg (W{n)) P. Ler this
be referred to as the projected covariance. Tuking the projection on both sides of (3.4) and (3.53),
and noting that PRP is independent of the look direction signal, one observes that the projected
covariance in both the cases is proportional to the mean output power. This implies that for both
the cases the projected covariance is i funciion of the look direction signal. This in turn makes the
weight covariance at each iteration sensitive to the look direction signal. However, the signal
sensitivity of the weight covariance for the recursive LMS case ts (n+1)2 times less than that for
the standard LMS case. The signal sensitivity of the standard LMS algorithm has been studied in
detail in |7].
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4. IMPROVED LMS ALGORITHM

IFor a linear array of equispaced receivers the arriy correlation matrix R has Toeplitz structure. The
standard LMS algorithm and the recursive LMS algorithm considered in the previous sections do
not wilize this propeny of the array correlation matrix. An algorithm exploiting this structure on
per sample basis is reported in [4]. Howewver, this algorithm does not make use of the previous
samples when estiniting the gradient at nth iteration. A method is presented in this section which
cxploits the structure of the array corrclation matrix and uses the past samples. The method is
referred to as the improved method and is presented in a form such that it has a finite memory.

An estimate of the gradicnt using the improved method 1s given by

g (W(n))=2R(n+ DW(n)
= | @1

where

Rin+ 1) =(l-w) ‘R(n)+a?{(n+l) : (4.2)

with t<a<l,

P()(n) Pl(n) E"L_'(u) )
Ao = f‘l (n} :
= : Pl(:l)
I f"‘;_l(n) ?‘I () PU(”) (4.3)
and
P n)= 1_151 _.-‘.\ (x ;"4_](1:; PO, L)
i {4.4)

It can easily be shown that the gradient estimate is unbiased.

The performance and the signal sensitivity of the above algorithm is now compared with
recursive least square (RLS) algorithm which makes use of the past samples and requires the siaine
order of computation for computing the optimal weights.

The following form of the RLS algorithm is used for the comparison

wm=Rms 5 & s
0o 0 Q {4.5)
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where R-1(n) is updated using the Matrix Inversion Lemma as follows:

R™n -1xemX " (m)R ' (n -1

R™n)=R™'(n -1)- i
I+ X ()R (n-1)X(n)

- with

RO =11 30

(4.6)

(4.7}

Note that in the absence of crrors us n—see, R-1{n)—R-1 and W(n)—»W.

Figures 1 and 2 compare the mean output noise power Pn(W(n)) versus the iteration number for
two look direction signal powers when the weights W(n) are adjusted using the two algorithms.

The mean output noise power is calculated using

(4.8)

PN(W(n)) = WH(n) Ry W(n)
R} g
! Signal Power=0.01 )
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Figure 1:

a2 = 0.1, look direction angle = 90°.
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wWH(n) Ry W(n) versus the iteration number for a 10 element linear array with one
half wavelength spacing. Two interferences: 61 =72 p1 = 100, 0,=98° p2=1,
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where Ry is the noise only array correlation matrix, that is,

H 2
= ) S +0¢1
R Z‘l P28 *n (4.9)

‘with pi and S; respectively denoting the power and the steering vector corresponding to the ith

interference source, 0% is the variance of uncorrelated noise measured on each element and 1 is the
identity matrix.

A linear array of ten elements with half wavelength spacing is assumed for these examples. The
variance of uncorrelated noise present on each element is assumed to be equal to 0.1. Two
interference sources are assumed to be present. The first interference falls in the main lobe of the
conventional array pattern and makes an angle of 98 degrees with the line of the array. The power
of this interference is taken to be 10dB more than the uncorrelated nojse power. The second
interference makes an angle of 72 degrees with the line of the array and falls in the first side lobe of
the conventional pattern. The power of this interference is 30dB more than the uncerrelated noise
power. The look direction is broadside to the array. The signal power for Figure 1 is —10dB
- below the uncorrelated noise power whereas for Figure 2 it is 30dB above the uncorrelated noise
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Figure 2: WH(n) Ry W(n) versus the iteration number for a 10 element linear array with one

half wavelength spacing. Two interferences: 0 = 72°, py = 100, 6= 98°, p2=1,
oz = 0.1, look direction angle = 90°,
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power. The gradient algorithm is initialized with the conventional weights. For the improved

LMS algorithm the gradient step size is taken to be equal to 0.00005 and for the RLS algorithm ¢ is
taken to be equal to 0.0001.

One observes from these figures that for a very weak signal the RLS algorithm performs better
than the improved algorithm. However, as the input signal power increases the output noise
power of the processor using the RLS algorithm increases. Thus the RLS algorithm used in the
present form is sensitive to the look direction signal. On the other hand this is not the case for the
improved LMS algorithm. The performance of the improved EMS algorithm improves as the
signal power is increased and in the present of a strong signal it performs much better than the
RLS algorithm, both in terms of the convergence and the output SNR.

Figure 3 compares the performance of the standard LMS algorithm presented in Section 2, the
recursive LMS algorithm presented in Section 3 and the improved LMS algorithm presented in this
section. The noise field and the array geometry used for this example is the same as used for the
previous examples. The input signal power is 30dB more than the uncorrelated noise power and
the gradient step size used is 0.000035. It is clear from the figure that the output noise power of the
processor at each iteration is less when the two algorithms proposed in this paper are used in
comparison to the output noise power using the standard algorithm. A comparison of the recursive
LMS and the improved LMS shows that the latter performs better, both in terms of the amount of
the noise and its variation as a function of iteration number.
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Figure 3: WH(n) Ry W(n) versus the iteration number for a 10 element linear array with one

half wavelength spacing. Two interferences: 81 =72° p; =100, 82=98%,p2 =1,
o2 = 0.1, look direction angle = 90°.
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5. CONCLUSION

The paper has proposed two algorithms for adaptive beamforming. These algorithms use all the
previously available sample to update the array weights in comparison to only one latest sample
used in the standard LMS algorithms. One algorithm is applicable to an array of arbitrary
geometry. Analysis presented in the paper shows that weights estimated by this algorithm have
less variance and are less sensitive to the look direction signal than those estimated by the standard
LMS algorithms.

The second algorithm is applicable for a line array. This algorithm not only uses all the previous
sample to estimate the weights but also exploit the structure of the array correlation matrix for a line
- array. The result presented in the paper shows that the performance of the algorithm is not
sensitive to look direction signal. This algorithm performs better than the recursive least square
algorithm in the presence of a strong look direction signal.
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INTRODUCTION

- In this paper we prescent a class of exact least-squarcs algorithms based on a modular structure, known as
the multistage lattice prediclor.  These algorithms are known collectively as Least-Squares Lautice (LSL)
algorithms, involving both order update and time update recursions. Latlice algorithms are robust, being
insensitive 10 variations in the cigenvalue spread of the correlation matrix of the input data, and have a
computational cost that increases linearly with thc number of adjustable tap weights.

The history of LSL algorithms can be traced back to the pioncering work Morf [1] on efficient solutions for
least-squares predictors. The formal derivation of the LSL algorithm was presented by Morf, Vieira and Lec
[2] and by Morf and Lee [3]. Since this time, many refinements, generalisations and applications have been
described in the literaturc. Much of the carly work on single channel lattice algorithms is now summarised
in the books by Haykin [4] and by Cowan and Grant [5].

An important modification 1o the LSL formulation came with the generalisation of the algorithm to
multi-channel (MLSL) form. For many ycars, most of the published work dealt with applications of singlc
channel lattice structures. The main objection 10 the multi-channel formulation being the increase in
computational complexity that ariscs, in particular, from the matrix inversions that the MLSL algorithm -
requires. Elfficient processing architectures for the multi-channel problem started to appear in 1982 when
Lev-Ari [6] identified wave-front array processing techniques for the multi-channel lattice algorithms.

In many of the early papers on multi-channcl lattices the algorithms were treated as a simple gencralisation
of the LSL equations [7,8]. This lead 10 the unnccessary restriction that an equal number of taps is requircd
on each channel. In 1984 Ling and Proakis [9] presented a gencralised multi-channel lattice algorithm along
with a processing architccture that wtilised a Gram-Schmidt orthogonalization process. A QR bascd
algorithm and more gencral derivation of the MLSL ¢quations was presented by Lewis in the 1988 ICASSP
proceedings [10,11].

The papers by Lewis [10,11] and the earlier paper by Ling et al. [9] provide the basis for work described
in this paper. Using this previous work we have been able to derive and simulate a processing structure,
capable of exact implementation of the MLSL algorithm.

LEAST-SQUARES LATTICE TIHHEORY

The lattice predictor consists of a number of stages connected in cascade, the name lattice being derived (rom
the shape of this cascaded structure. The number of lattice stages is equal 10 the equivalent prediction-crror
filter order. Thus for a prediction-error filter of order p, there are p siages in the lautice realisation. The
basic algorithm that characicrises a single channel lattice predictor may be derived in a number of ways. The
starling point for any derivation is the Levinson-Durbin relation so named in recognition of its use first by
Levinson [12] and then its independent reformulation by Durbin some thirteen years later [13].

ing
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A derivation of the lattice filier algorithm will not be reproduced here however the particular form of
algorithm used will be described. For a complete derivation the reader is referred to the book by Haykin
{4] and the references contained therein. The Levinson-Durbin relation may be used to derive the following
order update recursions that characterise any particular stage m of the lattice predictor.

() = (g (V) - KE (O (1-1) : (1)

b(t) = b g(t-1) - KB, (1) )

In this notation f refers to forward prediction cerrors and b to backward. K' and K® are the forward and

backward reflection cocfficicnts which in turn are related to the filtier coefficicnts of the corresponding

forward and backward prediction error filiers. Subscripts are uscd to denote the filter order and the brackets |
uscd to identify. the time. Nolc that in somc instances expressions such as X™ appear in the text. This

refers (o the inverse of the forward matrix X' and is not intended 1o imply X 10 the power of £-1. A similar ‘
notation is used for backward quantitics.

The derivation of the MLSL algorithm can, as in the single channel case, follow many different routcs.
Perhaps the simplest derivation can be oblained by exiending the LSL equations to matrix-vector form. As
noted by Ling et al. {9] and by Lewis [10], this can impose a considerable loss of generality in the resulting
algorithm, however his less gencral form is sufficient for all practical purposes. To extend the LSL equations
10 matrix-vector form we make (he following assumptions. For an n channel lattice we replace the forward
and backward prediction ¢rrors (f and b) wilh the n vectors f and b, and the paramelers K', K", of, " and
A become nxn matrices. The resulting algorithm is given by,

Cross Error Covariance: Apa () = a8 (1) + [ -1(‘)1—’:..1("1)/'Ym-1("1) 3)
Forward Prediction Error: (1) = [, (1) - 8 g (Do 2 7E (=100, 1 (1-1)) 4
Backward Prediction Error: b, (1) = b, (t-1) - 8% (0o IO, (1) (5)
Forward Error Covariance: o (1) = Ao h(t-1) - £ (OET(O/yp(t-1) : S (®)
Backward Error Covariance: o2 (1) = Ao 2(1-1) - b, (0bX (/v (1) ‘ (7N
Likelihood Variable: Yo = Y1 - X o I O (0 8)

The reflection cocificients are not computed directly, but the necessary compulations are included in cqns.
4 & 5. Lewis showed that there is no nced to compute the inverse of of and o explicitly each sample since,
from the matrix inversion lemma, the inverses may be updated directly. Thus eqns. 6 & 7 become,

o) = [eatt]) - o i NG (Do (11 ©
AAy(t-1) + £ 0a 3 H-DIW)
a::l-l(l) = lg:li@'—awgamt—’iﬂ)ﬂ:ad“'”l . (10)

ARy + baest-1b1))]

Lewis. has shown that this leads to an algorithm of O(pn®) computations per sample update. Ling and Proakis
[9] generalised the multichanncl analysis further to allow for diffcrent numbers of taps on cach channcl. In
this case we will confine oursclves 1o the case where each channcl has the same number of taps as most

101
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applications will have this format.

JOINT PROCESS ESTIMATION

A lattice predictor consisting of p stages will produce a sequence of m backward prediction errors that are
uncorrelated with cach other in a deterministic sense for all instants of time. In other words the time
averaged or detcrministic corrclation matrix of the backward prediction errors is a diagonal matrix. This
follows directly from the decoupling propertics of the LSL algerithm. Hence this structure is often referred
to as a "whitening"” filter. 1t follows, therefore, that by using these backward prediclion errors as tap inputs
applied to a corresponding set of regression cocfficicnts «, it is possible 1o determine the least-squares
estimate of some desired response e*(t) exactly and in an efficient manner. The resulting two-channel
structure is often referred to as a "joint-process estimator” because it solves the problem of estimating one
process from observations of a rclated process [14). Mathematically joint process estimation for a single
related process channel can be described by the following

Am(D) = A1) + by (DX vpm(D) | (11)
Em(D) = £n(0/6°0 ) (12)
eX (D) = eX(1) - ky(Uby(0) (13)

The corresponding sct of equations for multiple related processes {i.e. MLSL) can be obtained using the
malrix-vector generalisation described in the previous section.

FORMULATION OF TIIE LATTICE FILTER USING THE QR DECOMPOSITION ALGORITIIM.

The MLSL equations rccently described have been reformulated by Lewis [11] using the process of QR
decomposition. This formulation gives the necessary insight required to propose a systolic structure for the
lattice predictor. We will start by identifying a square-root term for the crror covariance matrices. Therefore
let us define the n x t matrices Z' and ZP by the following,

o (O Ty (1)
DD a2 | _ (14)

A2 (T (Y Yt (0)

bE O ()
JA L D g 1) (15)

m-l)ﬂ'rf'?“)ﬁ‘(l)lhm-l(l)

Za(V)

Zp ()

The error covariance matrices o, o® and A may then be expressed as,
ama(t) = Zg(OZg() api(h) = ZaTOZA ) bma®) = ZATOZA(D)

Defining a unit vector x by, x = [1 0 ...0 ]T. Then f and b can be expressed as,

102
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fna® = Srma () ZT®) = (16)
Bopt () = Sma () Z3") = (17)

Therefore the recursive variables of, o® and A can be replaced by recursive computations of Z and Z>.
Hence eqns. (4), (3) and (8) may be written as,

fn(® = S (1) VY1 (D Zgy D Zg (D[ Z g T-DZ 0 -DIMZET (-2 (18)
by () = by (1) - Sy (CDZYTEDZIWZET 2 0 Z T )z (19)
Ym(® = V(1) - Y (1) 2"ZEOZETMZ L)1 2] T (02 (20)

We may now express this problem in terms of the QR factorization of Z' and ZP. Applying the QR
decomposition we define the following,

Zfy = QTs'y = M7y Ny [R'(t)] = MT()RY(1) 1)
0

Zb1-1) = Q"(sh(ny =[M*T(1) N*T(v)) [ R"(t)] = MRt 22)
0

where the subscript m has been omitled for clarity. The matrices Q represent orthogonal transformations
and the matrices R are upper triangular. Eqns (18), (19}, and (20) contain projections of the form,

ZZTZ)'ZT = M™

Therefore by substitution and defining the variables,

BA®) = a1l MAO 2 Ba®) = JAma(t-]) ME() =
Xm() = Ma()Zp(t-1) Xmlt) = Ma(OZn)
The final form of the lattice algorithm is given by the equations,
I = fna(® - XRTOAmD) (23)
(1) = B (t-1) - X, (DB (23)
Tealt) = Yma(t-) - BLTOBL(T) (5)

BROAD BAND SYSTOLIC ARCHITECTURES

The use of a systolic array for beamforming problems is without doubt a desirable option. The basic
triangular array structure has been shown to have good numerical properties and the inherent parallelism
within the algorithm makes it simple to distribute the arithmetic tasks and exploit multiple processor capacity
to the fult [15]. Furthermore the systolic array implements an open loop or direct solution algorithm, which
rapidly provides the optimum adaptive solution.
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The basic broad band processing scheme consists of a number of sensor inputs. Each sensor input is followed
by a tap delay line to which weights are applicd and then summed to form the beamformed output. This
obviously represents a considerable increase in the magnitude of the processing problem as now for every
input channel there are p tap delay inpuis increasing the number of inputs from n to np. A simple
generalisation of the triangular systolic array used to solve the narrow band problem results in a structure
requiring some np inputs and therefore requires O(n?p?) operations per sample. Such a structure is basically
inefficient. In the broad band case multiple delayed versions of the samg¢ signal are passed through the array
but, the basic triangular structure makes no allowance for this fact.

In order to realise an efficient systolic structure we must refer again to the earlier analysis where the lattice
algorithm is formulated using QR decomposition. To compute the X(t) and g(t) variables described earlier
it is sufficient to update the R(t-1) matrix to the corresponding R(t) matrix and then apply the same
rotations to the other appropriate quantitics. The matrices R(t) and R(t-1) are simply Cholesky square root
factors of the forward and backward data covariance matrices and they may be stored in a triangular systolic
array structure [15]. These operations may be summarised by the following augmented matrices,

[ JAR(t-1) 0 JAXg(t-1) ] -
O Yma(t-D)  Sra (D DD Y (1)
RIM A0() X4
[9“’ CH } 26)
and
[ JARE(1-1) 0 JaXta-1) ] -
L (D (D) fYent(tD) (RO 7 (1)
RA(D 821 XE(n
[ of " ] @n

The basic processing structure for a single lattice stage consists of a pair of triangular systolic arrays with
additional columns added to the right hand side (Fig. 1(a)). The node algorithms themselves are presented
in fig. 1(b). From fig. 1 we sec that the basic operation of each siage is to decorrelate the forward residuals
from each other in the triangular array and from the dclayed versions of the backward residuals through a
post-processor siructure added to the side of this structure. The corresponding operation is performed to
the backward residuals to decorrelate them from one another and from the forward residuals. Each of these
stages may be cascaded together to form the structure shown in fig 2.

This systolic lattice structure consists of O(n?) nodes per lattice stage, the total number of nodes being
O(n’®p). Similarly the proccssing requirement is O(n’p) representing a considerable saving over an np by np
triangular systolic architecture. Using a detailed computer simulation of the systolic architectures we have
verified that there is exact agreement between these two systolic methods and the lattice equations 3 1o 8.

OPERATION COUNTS

We will now make a more complete analysis of the arithmetic operations required for each of these
algorithms. In a recent article [11] Lewis presented the operation counts for the multi-channel lattice
equations in normal (ie, non QR) form.. In other words a direct computation of eqns.(3)~(8). The
multi-channel equations require a matrix inversion as part of the operation count which is an O(n)
operations per stage.
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Using the matrix inversion lemma, Lewis showed how this can be reduced 10 O(n?) operations per stage, the
precise number of operations, for real data, being given by p(17n%+12n+8).

Backward Residuals Forward Hesiduals Backward Residuals  Forward Residuals

Primary
] Channel

Fig. 1(a).
" i I | gﬁlrlawl
h
Backward Residuals Forward Residuals anne
Boundary Modiflied Boundary Internal Modified Internal Final
Y,
"" by,
- |
] -7
YOI.I1
Fig 1{h}. d=g.R, Yum=Yin'Hij'xin You|=Yil’n'ﬂlj'xln You=vl Y,
Hu=d+Y?n-'m A
R“=d+an_1in Hi]=Hii+Sin'Yuul Ri]=Hij+Sin‘Yum
t=1,/R,
l=||,JH" XW':XEH xom=xin
I, =ld
law=t.d Seu=8,, 5,.=85,
5,.=tY,
i Scnulzt'yin
Xou=Yi
xwl=Yin

FFigure 1: Node arrangement for the systolic molti-channel lattice filter

. 1t is possible to obtain a similar operation count for the MLSL systolic architecture. The basic building

blocks of the systolic siructure are the node cells so they form an appropriate starting point for any operation
count. The node algorithms we will consider are those which avoid the need for computation of square rool
terms in the boundary cells. In this analysis we will assume there is a requirement for dewcighting of past
data to maintain pumerical stability, this adds one more multiply operation 1o the boundary cell.,

Table 1 illusirates the operation counts for the boundary, internal and final node cells. Thé_upcrulinu
counts will be different if the data is real or complex. Complex data operation counts are added in brackets.
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Figure 2: Systolic Multi-channel Least-Squares Lattice filter
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Talle 1: Operation counts for node algorithms

In the lattice structure there are p stages with O(n?) nodes in each stage. The total numbers of nodes and
operations for all stages arc given in lable 2.

Celi type Number No. of Ops. (real data)
Boundary 2p(n-1)+(n-1) 14p(2n~1)+7(n-l)
Internal p(3n*5n+2)+(n*n)2 4p(3n -5n+2)+2(n%n)
Final 2p(n-1H+1 4p(n-1)+2

Total p(3nz—n-2)+(n2+ ny2  2p(6n*-n-5)+2n*+5n-5

Table 2: Operation count for the systolic lattice structure

For the lattice structure the dominant term in the operation count is 12pn2 operations, compared 1o 2(np)*
for a solution involving a full triangular array of np by np nodes. If we equate these (wo terms we find that,
for large n, the lattice structure will be more efficicnt than the triangular array if there are more than 6 taps.
This figure is reduced if terms in n as well as n? are included in the computation.

CONCLUSIONS
We have identified the multi-channel lcast-squares lattice filler as a particularly cfficicnt architecture for

broad-band adaptive beamforming. We have deseribed how a primary channel may be incorporaied into
the systolic structure using the joint process estimation procedurc. We have verified that the lattice structure

1ne
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converges within a fow samples o simulated broad-band sources and therefore provides much more rapid
convergence compared 10 conventional steepest-descent algorithms, which are sensitive to the cigenvalue
spread of the data covariance matrix.

In this work we have presented the systolic architecture required for MLSL and LSL operations. We have
simulated both the full equations and the QR form and found thcm to be in exact agreement, thus verifying
the method proposced by Lewis [11] and the exiensions proposed here.

For an n channcl lattice with p taps per channel the total number of processors required is O(pn?) for a
structure giving an cstimate in constant lime.  This compares favourably to a system in which a triangle of
np by np nodes ( O(nZp?) processors) is used 10 perform full QR decomposition on the input data. For a
system with a Iess siringent bandwidth consiraint a modified architecture using one lattice stage a number
of times would result in O(n?) processors giving an estimate every p samples.
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