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1. INTRODUCTION

This paper details In mensive set of isolated word recognition experiments using a hidden Markov model

(HMM) remgniser with matinuous probability distributions. The aim of this work has been to study and

optimise the perfnrmance of the umpire: for both speaker-dependent and speaker-independent application;

and it brings together a number 0! successful techniques which have been repon elsewhere in the literature.

newefimenuusingammmanmotspeechdmbasespemitefi'mivecmsscompafisansoflhealgorithm

to be made. The main “peas that have been investigated are the choice at front-end parameters, the use of

mixture densitiu, variance pooling schemes, the choice a! model topology, the use offull covariance

distribution: and linear discriminant analysis (LDA). A number of ml comparisons combination and

extenaians tn the reported methods have also been implemented which have lead to a greater understanding
and improved puformanne. ln partinrlar the combination of LDA with minute densities in in HM

framework has y'ven the best performance for mum-speaker and speaker-dependent recognition.

Thel'ormatollhepapa'sntnllow:lnseaianZadesaiptionolthetwndat‘abasuuaedintheperformam
wmpafiwuwmhy'mmmuahhaandmwhinndgnflhmmphydmdewihedinacaionS.

Four acoustiefmnt-endawaeehosenforevuhmionAbriefaummaryofeaehfiont-endandamparimnof

itsperformaneeilgivenlnleaiondjeetinnsStnsdeaa-ibethemnyenensionstotheHMMwhichhave

been evaluated. Fmdlyasnmmaryot' the report and annelusiona are pmvidedinseetinn 9.

1. DATABASES

Two databases were used in the performance evaluations

l) Alphanumeric database

mamquntymmmutmmdmeuuwndmmmlmdmono
repetitinnaolthealphanuznerie vocabulary apokenhy lOepeaken(5 maleandS female).1'herpeeeh

datawaelirstrewrdedinannnechoieroomoaaSonyBetamqurecordermndwhsequently

dip‘tiledatmhflzwithuhitrunltnionanddm-Hmpledtolohflzmdphanumerievmhuluy

wuchcsenuitcnntaiueeveralhiyilyconfiuahlenthseuegtheE-ulasweflausetd‘phonuiufly

diidndwudaflhedip’tgwhiehmmdhmmyappficafimlnthermpitbnevfluums
npetfliomdeuhwdwuedudtmmininamdrmfmevflufiammwwdremidm
perform-nu: are reported in this paper: (i) avenge speaker-dependent realignilbn [SD] (ii) multi-

speakerrecnpition;moaoftherecognitinnrmurebasednnthesmalespealenlMS-flbeamea

mallet number of speaker: allowed a yeater throughput of performance enmparixons. Townfirm

these finding for a laryr apenlter invenlnry, a mall number of 10 speaker runs were subsequently
perfumede-lo]. ‘
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Mum-Speaker telephone quallw database

This speech data forms a subset of a database provided by Marconi Speed: and Information Systems

(MSIS). The data was collected over the UK telephone network for a variety of channels and

telephone handsets. The data used for the evaluations consisted of 1 repetitions of a 14 word

vocabulary (the digits + 'oh'.'cancel','stop','help') spoken by 64male speakers. Closed speaker

recognition was performed [MS-64] using one repetition of each word for training the multi-spealter

models and one for evaluation. Subsequent recopitinn evaluations for an open speaker test, using a

further 32 male speakers (not included in the training set) gave comparable performance with the

closed speaker results. This suggests that the results reported here are indicative ol‘ speaker-

‘mdependent performance.

The use of the two databases enables the behaviour of the recogniser to be observed over a range of operating

conditions: i) speaker-dependent recognition of high quality speech on a difficult vocabulary. ii) multi-spealrer

operation on the same material as 'i)‘ and iii) Multi-spealter recopition of telephone quality speech with an

easy vocabulary.

The recognition evaluations on the two databases are summarized in tables 1-5. The recognition rate (‘36) and

standard deviation acrossthe speakers are g'ven for each result.

3. “MM TRAINING AND RECOGNITION ALGORITHMS

The HMM model was a continuous probability emission model with 10 states and a left to right topology

allowing skips over a single state. Unites otherwise stated a single Gaussian probability density function with a

diagonal covariance matrix at each state is assumed. The HMM training method comprised ol estimation

of the HMM model parameters followed by reestimation of those parameters using the BaumWelch

algorithm. Isolated word recognition was performed using a Vilerhi algorithm employing beam—clipping and a

log Gaussian distance metric

4. FRONT-END PARAMEI'ERISATION

Four acoustic front-ends were used in the performance comparisons:

mm: The cepslral coefficients were derived from an 8th order linear predictive analysis of the

short-time windowed speech signal using the autocorrelation method [4].

mm: This was obtained by a cosine transformation of the real logarithm of the shun-term

energy FFl' spectrum expressed on a mel scale [5] using a bank of 7D triangular filters.

The lilterbank front-end was based on the RSRE standard equations [6]. At 5 kHz bandwidth

the number of tiller channels (N) was 73 arranged on a non-linear frequency scale. The first filter was a total

energy measure above 60 Hz. Filters 1 to N-l were 4th order Butterworth chosen to he non-overlapping and

the top filter was a high-pass tiller.

mm:This method combines the all-pole modelling of lhe LPC analysis with the critical

band spacing [7]. The technique has practical advantages over some other perceptually based processing

techniques. Computationally it approaches the efficiency of the standard linear prediaive analysis and it can be

directly substituted for LP analysis in speech recognition systems. The Bark cepstral parameters were
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generated by first obtaining predictor coefl'tu'ents using the Burg Lattice method [8] which was altered to
provide Bark frequency warping. The lattice method differs from the autocorrelation and covariance methods
in that the predictor coefficients are obtained direaly from the speech samples without an intermediate
calculation of a correlation function.

A late-emphasis filter (1-0.951‘1) was applied to the speech data prior to performing the front-end analysis. For
the cepstral front-ends a N ms Hamming window wasapplied every 10 ms. 12 cepstral coefficients were
obtained plus an enery term (Co). Each acoustic front-end vector was augmented with its time derivative
computed as the difference between two frames spaced 40 ms apart.

Automatic word end-point detection was performed to remove silence at the start and end of each word using
an energy thresholding method; no hand-labelling of the data was performed.

Table 1 summarises the performance of the four acousticfront-ends for the alphanumeric and telephone
quality databases. A comparison of the three cepstral front~ends shows that the linear frequency spacing
technique (LPC ccpstrum) obtains the best performance in the speaker-dependent tests, however. the non-
linear techniques perform better for the multi-spealter tests. This result suggests that the non-linear techniques
are more robust in modelling speaker variation whereas the linear technique provides improved acoustic
discrimination on a per-speaker basis. The poor performance of the l'tlterbanlr front-end compared to the
cepstral front-ends may be due to the larger number of free parameters (46 filter channels including time
derivatives, compared to 25 oepstral parameters) which could lead to undertraining on limited data. Other
factors which may account for the difference are the validity of the assumption of diagonal variances and the
spectral smoothing inherent in the reduced parameter cepstral representation.

The subsequent recognition experiments were performed rising the LPC and MEL cepstral front-ends since
they achievedthe best performance for the speaker-dependent and multi-speaker tests respectively.

5. VARIANCE POOLING

The use of fixed or pooled variances over all states and word models have been found to provide superior
results over the me of individual nodal variances. Examples of such schemes include the computation of I
'grand' feature vector [2] and the application of empirical weighting functions (eg. quefrency weighting) which
attempt to approaimate the statistically derived within-class weights [9]. The superior results suggest that the
variations in the training set are not sull‘tciently great to adequately cover the variations in the recognition set.
The use of variance pooling reduces the number of free parameters in the system and therefore reduces the
problem of undertraining. The disadvantage of pooling is that states which correspond to sounds which may
have quite different second order statistiu are averaged together, There is thus a trade-off between the amount
of training and the type of pooling which results in the best performance.

Variance pooling was performed within the Baum-Welch reestimation procedures by accumulating the partial
scores moss statesM pooled variance estimates were obtained:

(i) A 'grand' variance pooled over all states and all words [2].

(ii) A word-dependent pooled variance.
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Table 2 summarises the results of the two variance pooling methods compared to the case where nodal

variances are allowed. These experiments clearly demonstrate the trade-ofi' between the number of tree

parameters which can be adequately trained and the sin of the available training data. For the SD tests. the

‘grand' variance obtained the best performance (97.1% grand d. 955% nodal for the mel-cepstrum front-

end). For the MS-S tests. where a larger number of tokens were used to train each word HMM. the 'yand‘

variance gave the lowest performance (943% for the 'grand' variance compared to 94.7% with nodal

variances). The superiority of the word<dependent variance in this case is probably because the distributions

are more sound specific since many of the confusable words (eg. E-set) have only a small number of phones

per word. Finally in the MS-M case, where 64 repetitions of each word were used for training the HMMs, the

use of nodal variances obtained the best performance (91.0% grand of. 98.8% nodal).

It is interesting to note that for the speaker-dependent runs, the advantage of the LPC-cepstrum over the Mel

oepstntm reported in seuinn 4 with nodal variances is not maintained when using variance pooling.

6. STATE DISTRIBUTIONS - MIXTURE DENSITY HMM

Mixture densities have been applied to HMM speech recoyiition by Bell Laboratories [1]. (Another type of

mixture, called the Richter mixture, has also been used by IBM [10] but is not considered further here), In a

mixture model a single gaussian probability distribution at each state is replaced by a set of gaussiarts and the

output pdf at each state becomes a weighted summation of the gaussian mixtures. The advantage of the mixture

approach is that i) it attempts to improve the modelling of outliers in a distribution since the outliers are more

likely to be closer to a mixture distribution than a singe gaussinn, ii) it improves the modelling of mold-modal

distributions which typically occur over a range of speakers, and iii) The mixture model can approximate other

(non-gaussian) pdfs and oovariations.

A mixture density HMM similar to the Bell Laboratories approach was implemented where the mixture

centroids were allowed to be different and the covariance matrix for each mixture was constrained to be nodal

and diagonal. The initial estimates of the gaussian mixtures were obtained by boot-strapping from a single

Gaussian model using a lt-nteans training procedure [I].

Table 3 summarises the performance of the mixture density modelling. For the MS-5 runs the mixture model

consistently obtains better recognition performance than the single Gaussian model. This was also observed for

the MS-IO runs. Comparison between the mixture HMM and a single gaussian full covariance model indicates

that the mimrre model is more effective at modelling the stale distrflsulions which occur for a number of

speakers The use of mixtures in the speaker-dependent tests. however. deteriOraled performance; the likely

causes are the increase in the number of free parameters to be trained on limited data and the fragmentation of

the slate distributions.

1. TRANSFORMATIONS

Linear transformations are used to convert speech front-end parameters to a reduced representation while

preserving much of the information in the orig'nal spectrum. The motivation is three-fold: i) to obtain

transformed speech feature vectorswhich are uncorrelated and have a unit variance so that a Euclidean metric

is valid in the transformed space. i) a reduction in the number of parameters can be achieved by eliminating

the less reliable features. 0n limited training data the performance can actually be better with the relevant set
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of dimensions since only the directions where statistiml noise has least elfect are considered. iii) The storage
and computational requirements of the HMM recogniser are reduced due to the reduced front-end
representation.-

The linear d’scriminant transform uses the dirediona in parameter space which mam’mise the ratio of the
between—class to the within-class statistim. An example of this approach is the [MELDA transform [3][12]
which combines linear discriminant analysis (IDA) and a MEL-scale representation and has been shown to
improve the robustness of speech recognisers for a wide range of distortion;

Table 4 shows the effect of applying a LDA transformation for the two databases After the LDA transform
was applied to the front-end parameters the HMM models were trained using diagonal covariances pooled
over all words andstates. Attempts were made to optimize the transformation for the number of feature

elements remaining at each stage of the transformation computation. This optimization proved inconclusive
since the best performnnce was obtained for a variety of combinations.

Compar‘uon between the LDA and a full covariance HMM model is a useful indicator ofthe et’feetivenessof
feature selection. Considering the mum-speaker results with a met-upstrum front-end. the results show that
the LDA transform was generally 051.0% better that the pooled covariance model Some of the improvement
ruiugtheLDAtransformthereforearisesfrumthemodellingofthepoolednomianoenndafimher
improvement from the use ot‘discriminant analysis to remove detrimental vector direaicns.

Tabledalsoshowsnoompariaonbetween n'pnnd'fullcovarianeeflmdanda'gand' diagonal covariance
HMM. The improvement obtained from the use ofa full covariance model is much greater in the multi-spealter

experimentrthanfortheSDmeT'hisresullindit-nteathatthefullcovariancemodeleantosomeeatent
compensate for the mold-modality in the distributions.

Although the LDA transformation obtained improved performance. the mixture density approach proved to be

more effeaive in modelling mold-speaker distribution A combined minure and LDA model was therefore
proposed with the advantages of improved modelling provided by the minure model, and the modelling of
correlation, end parameter reduuion achieved by the LDA transform. The results obtained for the combined
model. shown in table 4, were the best multivspealter reccgtition results obtained for the 10 state HMM model
(98% for the alphanumeric database and 99.5% for Lhe telephone quality database).

The IDA transform has also been used with the filterbank front-end. The improvement in performance
obtained with the transform was much yealer than with the cepstral front-end became the features are more
correlated (For the MS-64 arse: 90.0% for filterhnnk only of. 985% filterbnnk With transform). with the
transform applied. the filterbanh front-end obtains a similar performance to the eepstral front—end. ..

8. MODEL TOPOLOGI'

Researehhasshown Lhatreoognitionperfnnnanc canbeimprovedwhenthe numberofstatesfirelated tcthe
duration ofthe word [13]. Table 5 summarises a set ofperformance comparisons between a to state HMM and
a variable state model where the number of states is set equal to half the average frame duration of each word
minus one standard deviation ( the average number ofstates in this use was 17). The larger average number of

states per word results in greater model 'resolution'. The results show that without a LDA transform applied
the variable state H'MM performs signifimnlly better than a 10 state model (98.7% compared to 97.7% for
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three miatures). When a LDA transform is applied however, the performance it worse (95.1% compared to

96.1%). A possible explanation for this result is that Idler: the number of states is large. the long duration

sounds (es, the vowels) wnl contribute more to the computation of the pooled transform since they will be

mapped onto a larger number of states. As a result the transient: is biased towards the distribution of the

longer duration smmds which may not be pertinent to the disc-intimation between the words of the vocabulary.

9.l)lSCUSSlON AND CONCLUSIONS

A set of isolated word recognition experiments using a hidden Markov model recognise! have been detailed.

From all these uperiments two general principles have been found to be important in achieving good

performance bout the maximum likelihood reeogtiser. (i) the use of appropriate statistital models to match

the distributions that occur in the data (ii) the ability to train the model parametersfrom a limited amount of

training data. As an be observed in the results presented here there it otten a trade-oft between these two

requirements. The best performance is achieved with the right combination of choice of distribution to match

the form of the data and the choice of constraint on the number of free parameters which can be adequately

trained on the data available. For a fixed number of states the best performance was obtained with a novel

combination of Mel cepflrum front-end, a transform based on linear analysis and mixture density

distributions. An analysis of the errors remaining for the alphanumeric database show that half are due to

sipifimnt end-point errors. While it is diflieult to malte comparisons with results reported elsewhere on

different databases, those presented here are among the best reported on comparable vocabularies and

condition eg. [l4][15].
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TABLE I - PROF-l END PAMMEI'ERIL‘TIONS

HIGH QUALITY TELEPHONE QUALITY
WMERICS IA WORDS

.13:- Mm min:—
Mu)

9530.1)

90.7“)

 

  

 

   
       
    

  

9140.1) _

90.7(32)

91747—6)

91:42.9)
     
     95.505)

TABLE 2 . umn'c: I’OOLING

  

HIGH owumr TELEPHONEcum
AU’HANUMERIES u wont):

m mmVAIIANE
FRONT-END POOLING

  
   
  
  
  

NODAL mu.” -
wow DEPENDENI' H.905)
'GI'LAND' VARIANCES 87.703)
’GRAND' oowuuANcss 9x705)

  

 

  
  
  

new 94:10.2)
wonuoeraNDEh-r - 95.105)
'GRAND' VARIANCES 9130.4)
«mum mvmwecas 94mm)
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TAflLE J - STATE BIS‘I’RIBL‘I‘IONS

HIGH QUALITY TELEPHONE OUAIJTY
WMERIG I4 WORDS

HATE

Dimmer: mil—mn-
LPC-CEPSI'RUM SINGLE GAUSSIAN 9650.6) mm) mm)

(nodal diuunll maxim I
1 MIXTURES yum) yum) 93.705)
3 MIXTURES -
A MIXTURES

9mm Sam)
. mm) mm)

SINGLE GAUSSIAN 9mm) 93.7(31) -
(poakd lull WVII'IIHCE)

MELCEPSTRUM SINGLE GAUSSIAN 955m) 9410:) mm» 9390:)
(nod-l diqonll cow-rim:
2 mass 95.0w) gm”) 95mg) .
3 MIXTURES - 91.70:) 9510.1) 9930.7)
4 MIXTURES - 972(25) noun) -
SINGLE GAUSSIAN 9110:) 9mm . 9mm
(poulgd IuII marinate)

 

TABLE I - MSFOWTIONS

HIGH QUALITY TELEPHONE QUALITY
ALPHANUMERIG ll WORDS

’GRAND' VARIANCE 9650.0) mm)
'GRAND' COVARIANCE 9610.7) 93.70.?)
LDA TRANSFORM mm; mm)
3 GAUSSIAN MIXTURE - 9mm
mA ~ :MIXTURE - mam

’GRAND' VARIANCE yum) 94.1w)
'GRAND' COVARIANCE 9120: 9mm
LDA TRANSFORM yum) mm)
1 GAUSSIAN MIXTURE - 97.703)
LDA A S MIXTURES ~ Iwu)

 

TABLE 5 - MODEL 1090va

 

HIGHQUAW
ALPHANUMERIS

FRONT-END mm
MEL-CEPSTRUM IOSTATESOOS) 9650.7) 94.761) 9116.6)

VARIABLE STATES (VS) 95.!(11) 965(21) 93.2(‘3
IDS + 3 MIXTURES 97.703) 96.801)
VS + 3 MIXTURES - 93.7(03) 97.90.!)
10$ 0 [MELDA 971(12) 961(16)
\’S v IMELDA - 95,1(17)
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