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ABSTRACT

We consider (§1) an acoustic wave of frequency or and horizontal wavenumber k in an

exponential boundary layer of free stream velocity V and thickness scale L. It is shown that a

critical layer exists in the boundary layer if tr)<kV, and that it acts as an 'acoustic valve' (§2).

Both the critical layer (54) and the free stream (§3) are regular singularities (§6) of the wave

equation. In their neighbourhood exist ascending power series solutions, specifying
propagating. evanescent or divergent waves in the free stream (§3); the acoustic field can have a

logarithmic singularity at the critical layer (§4). It is possible to perform analytic continuation

(§5) between the solutions in the neighbourhood of the three singularities of the wave equation,

two regular and one irregular. The irregular singularity corresponds to the limit of infinitely

strong vorticity below the wall (§7). and the general solution in its vicinity involves infinite
determinants, as for Hill‘s equation (§8), although a particular solution exists as a normal
integral (§9). Among the many possible cases of possible interest (§10) we plot the acoustic
pressure in a supersonic boundary layer with acritical level.

1. INTRODUCTION

The transmission of sound [1] across boundary layer is imponant in at least two contexts: (i)
the attenuation of the noise entitled by an engine and received in aircraft cabin; (ii) the acoustic
propagation in the atmospheric layers near the ground. We take as an example an uniform

stream in the x-direction sheared in the y-direetion, i.e. with velocity 7=U(y) 2",. An acoustic

wave of frequency a) and wavenumber k in the x-direction has an acoustic pressure P, whose

dependence on_y is specified [2] by the differential equation:

F" + (2kU‘/(m-kU)) P‘ + (tu-kU)2/L2-k2] P=0. (1)

where prime denotes derivative with regard to y, e.g. U‘=dU/dy. The factor in curly brackets is

the Doppler shifted frequency:

m.(y)=u»k U(y) = wk V(I-e-¥/L), (2)

which is given by (2) in the case ofan exponential boundary layer.
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2. CRITICAL LAYER AND VALVE EFFECT

The wave equation (1) has a singularity where the Doppler shifted frequency vanishes, and this

(it—(yc)=0 specifies the location of the critical layer; in the case (2) of the exponential velocity

profile, the critical level

yc=L logo-Q), fl 5 w/kU. (3a.b)

if the Doppler shifted frequency is negative in the free stream tu-ltU<0. in which case it must
vanish at an intermediate distance y=yc from the wall; conversely. if the Doppler shifted

frequency is positive in the free stream tu-ltU>0. it is positive everywhere. and no critical layer

exists. viz. yc is not real. The critical layer y=yc is placed at §=l bythe change of independent
variable:

:5 e'Y/L/(l-Q), P(y;k.o>)=f(;), (4a.b)

for which the wave equation (1) has polynomial coefficients:

(1-0 (1 t"+§(1+t)f +(1-c)(A2<1-t>2 - K2) i=0. (5)

and has solution in series of powers of g. In (5) we introduce the dimensionless Doppler
shifted frequency and wavcnumber:

A=(to-kV) LIC, K=kL. ‘ (6a.b)

The absence of a critical layer (hi. the variable is negative §<0. the power series has
alternating sign. hence a modest sum, and changes of acoustic pressure KCCI'OSS the boundary
layer are small. Conversely. in the presence of a critical layer (kl. we have a series with fixed

sign {>0 and large sum, and so there are significant changes of acoustic pressure accross the
boundary layer. implying that: (i) a sound wave comin from the free stream is significantly
attenuated as it approaches the wall; (ii) a sound wave m the wall is amplified towards the
free stream. Thus the critical layer [3]. when it exists, acts as an acoustic ’valve'. favouring
propagation in one direction

3. EVANESCENT, DIVERGENT AND PROPAGATING WAVES

Ifwe perform the change of dependent variable:

M) = t" KC). 1: = Viv-KI. _ ' an.»
the coeficients of the differential equation became quadratic instead of cubic polynomials:

'(l-D §°"+ KHZ”) + C(l-Ztm '3' + l2v-A2(1-C)(2-C)l 0-10. (8)
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the free su'eam y==°. 5:0 is a regular singularity [4] of the differential equation (8). and a
solution exists as an ascending power series:

¢«(C)=§° E Cn C". 6=0.-2v. - (8m)
n=0

where the index 0 may take two values. and the coefficients satisfy the recurrence formula:

(n+o+1)(n+o+1+2u) Cn+1=

=[(n+o)((n+c-2-2u) + 2(A2-u)l Cn+A1(Cn.2-3C...1). (8c)

The aoousfic field is a linear combination of the particular integrals (8a,b,c), viz.:

P(y:k;w) = C+ C“ 00%) + C. C" ¢-2u(§). (9)

where the C: are arbitrary constants of integration.The two terms of (9) scale as:

Ultimo. 0mm - Cfl-cm’k ' (lo)

and hence represent: (i) an evanescent and a divergent wave for real 1); (ii) inward and outw d

propagating waves for imaginary t). It follows from (7b) that we have propagating waves in the

free stream if K2>A2 in (6a.b), i.e. if ~kc<m~kV<kc; otherwise. if tn>k(V+c) or w<k(V-c) use
acoustic field consists of evanescent and divergent components.

4. ASCENDING POWIER SERIES AND LOGARITHMIC SOLUTIONS

The solution (9) is valid for |§|<l, which includes the whole flow region 0<y<w in (4a) if
(b2. If 1<fld then the solution (9) converges only beyond the layer y1 given by:

y > y] = -L Iog(fl-l), (l 1)

and idekl it converges beyond the critical layer y>yc in (3a). The latter corresponds to §=l,
which is a regular singularity of the differential equation (8): hence it has a solution of the form:

WK) = 2 bn (C- 1 W". (12)
n=o

where the coefficients satisfy the recurrence fonnula:

(n+o+l)(n+o-2) bm = ((n+o)((n+o-2u)-2u) bn + A1(bn_.+bn_2); (13)
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since the index takes the values 0:0.3 differing by an integer, the linearly independent

particular integrals [4] are:

3 3 —3 a

ott)~(t—1). a: (02 lim ao°(olao~(c—1) legit—x).
“3 (l4a.b)

i.e., one vanishes at the critical layer. and the other has a logarithmic singularity there. Their

linear combination specifies the acoustic field in the vicinity of the critical layer.

“.33

P(y;k,m)=c,§n 0 (C)+C2 § 0 (C), (15)

which converges for I§-1l<l.

5. THREE REGIONS AND ANALYTIC CONTINUATION

The differential equation has singularities at C=O.l .w; in the neighbourhood of each singularity

there exist two linearly independent particular integrals. for a total of six. They are specified by

series of powers; (§3) of C, converging for l§|<l, about the free stream; (54) of C-l.

converging for |§-ll<l. about the critical layer. (55) of NC, converging for ifil>l. about infinity

below the wall. Since the region lfi-lkl overlaps with |§l<1 and l§|>l, it is possible to

perform analytic continuation. i.e.. any particular integral is a linear combination of any twoof

the other pairs. This scheme is similar to that of hypergeometric equation [5]. which has regular

singularities at §=0.l .oe. with the important difference that the equation (8) is of higher level of

complexity: it would reduce to the hypergeometric type if A=0. but for AacO the singularity at

§=o° is irregular, and reduction to the hypergeometric type is not possible. We proceed to

establish the nature of the singularities (regular or irregular) of the differential equation, which

determines the type of power series (ascending or ascending-descending) solution in its

neighbourhood:

6. TWO REGULAR AND ONE IRREGULAR SINGULARITIES

The nature of the singularity (regular or irregular) of the differential equation. determines the

type of power series (ascending or ascending-descending) solution in its neighbourhood, The

singularity at the free stream (y=n°, (=0) is regular because if the differential equation (8) is put

into the form:

C2 0" + C P“) 0' + q(§) °=0. (15)

the functions p.q (C) are analytic at §=0g hence an ascending power series solution (8a.b.c)

exists. Similarly for the regular singularity at the critical layer (y=yc.C=l). with the coincidence

of exponents leading to a logarithmic singularity in the solution. In order to investigate the
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singularity of the differential equation (8) in the limit of strong vorticity below the wall (y=-w.

Cm»), we perform an inversion: '

n=1/§. V(Tl) = MC). (l7a,b)

and consider the singularity at the origin of:

(1-11)?! V" + (3-71) ‘9’ 4* “(z-AZ + (3A2-K2)m-3A2m2+A2/n3l \V=0 (13)

If the equation is written in the form:

nzv" + n :01) v + sm) \v=0. (19)

it is clear that 50]) has a double pole at 11:0, so this is an irregular singularity of (18),

corresponding to the irregular singularity C:» of (8). If a solution of (18) was sought by the
Frobenius-Fuchs method. in the form of an ascending power series, it would fail to specify an
indicial equation. _

7. INFINITE DETERMINANTS AND SYSTEMS 0F EQUATIONS

In the neighbourhood of the irregular singularity of the differential equation, the solution has an
essential singularity, specified [6] by a Laurent series, involving ascending and descending
powers:

4-» +oe

WC) = 2 dn TIM" = Z dn C” = ¢(C)- _ (20)
n=..¢ 11:.»

Substitution of (20) into (18) leads to an infinite system of linear homogenqu equations:

+9.:

2 Dn,m(0) dm=0- (21)
“1:... .

with matrix ofcoefficients having all terms zero, except for four rows along the principal
diagonal:

on, = (n+0? + A2-K2-t. Dn.n+2 = GA”, Ola-b)

on,“ = 3M- - (n+0) (n+0+4) - K2, om“; = —A2. (22c,d)

The system (21) has non-trivial solution, i,e. the series (20) does not vanish, iff a is a root of

the infinite determinant IDnvmm)! = 0; this is the indicial equation, which has two roots. For
each root the system (21) may be solved for the ratio of the coefficients to do:
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Elton,“ (am/do) + Dn.-m (am/do): = Dn.o.m:   
i.e, this is an infinite system of linear inhomogeneous equations.

 

    8. TRANSFORMATION T0 HILL'S DIFFERENTIAL EQUATION

 

   
    
  

   

  
  
   

  

   
  

   

     

The methods of evaluation of infinite determinants have been developed in connection with
Hill's equation, and we note in passing that the equation (18) can be reduced to the latter form.

Since we need the solution of (8) for l§|>1, or (18) for |r||<l, we deform the change of
independent variable:

n=cosze. v(n)=g(6). ' (24a.b)
which leads to:

g" - (4 cot 29 + 8 + 2 lane) g' +

(Kl—A2 + (3A2-K2) secZe-3A2 sec4e + A2 secse) g=0. (25)

The coefficient of 3' may be eliminated by the change of dependent variable:

g(9) = e49 sine h(6). h" + 1(6) 11:0. (26a,b)

leading to a differential equation (26b) with periodic coefficient:

1(9) 5 Kz-A2 + (3A2-K24-l) secze - 3A2 see‘e +

+ A2 secée - 4 seczze + (4+tan9+2 cot 29)7-. (27) I

The latter can be expanded in series of cosine of even arguments:

on
1(9) = 2‘ An cos(2n9). (28)

n=0

and (26b. 28) specify Hill's equation. The approximations used by Hill [7] do not apply as
well here. because the coefficients A" decay slowly.

9. ESSENTIAL SINGULARITY AND NORMAL INTEGRAL

The general integral in the neighbourhood of the irregular singularity of the differential equation
has an essential singularity specified by the preceding methods (§6.7) involving infinite

91a Proc.l.o.A. Vol 12 Pan 1 (1990)  



 

Proceedings of the Institute of Acoustics

0N SOUND TRANSMISSION ACROSS AN EXPONENTIAL BOUNDARY LAYER

determinants. There exists one particular integral, which can be detemtined without recourse to
infinite systems of equations. It is expressed as a normal integral [4.6] of the form:

w(n)=e“(”'"qtn). qm) = 2 am”. (29a.b)
n=.0

where the function 9(1/71) takes care of the essential singularity at 11:0. so that qm) is an

ascending power series determined by the Frobenius-Fuchs method. In order to find out
whether such a function exists, we substitute (29a) into (18) to obtain a differential equation for
q.

1101-1) q" + (29‘n(n-1)+ 11-3) q' + ((fl"+fl'2) nut-I) + (3-11) 9413-1-11 +

+ (k2.3A2)/n - 3A2m2 + A9113) (FO- (3°)

The latter has a regular singularity at T1=0 if the coefficient of q' is 0(1) and the coefficient ofq

is 0(1/I1). This is met by:

fl=iNn+(S/2:tl\)logr|. (31)

so that the normal integral (29am is given by:

\tltn)=e'N'1115fl"‘ 2 am“, (32)
“=0

where the coefficients an satisfy the recurrence formula:

2A(n+c+l) an“ = (K2-6A2+3A+]5/4-(n+6)(n+U-4A-7)) an

+ ((nm—l)(n+0-6A+16) + Az-KZI‘an-l. (33)

which follows from the differential equation for q, viz. (30) with (31):

Tl’Ul-Dq" + 211 l2A-4-Nn + (340 n) q' +

+ ((A2-K2m + x2-6A2 + 3A + 15/4) q=o. (34)

Note that n=0 is not a regular singularity of (34), but the Frobenius-Fuclts method leads to an

indicial equation of the first degree 0:0. ie. we can determine only one particular integral.
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10. ACOUSTIC PRESSURE AS A FUNCTION OF
DISTANCE FROM THE WALL‘

the free stream. faster for larger wavenumber.
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The preceding methods specify the acoustic pressnre as a function of the distance from the
wall, using as necessary the computation [8] of solutions about the three singularities, to cover
the whole flow region. for all possible combinations of dimensionless frequency (38).
wavenumber (6b) and Mach number M=Vlc of the free stream. Since there are too many
combinations of interest. we limit overselves to one example of a boundary layer with a free
stream Mach number M=l.25, for which the sound field is evanescent: the dimensionless
frequency (2:0.2 is such that a critical layer exists. The acoustic pressure has a dip at the
critical layer. and increases: (i) towards the wall, independently of wavenumber. (ii) towards
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FIGURE 1 — Acoustic wave of frequency to and horizontal wavenumber k in a boundary layer
with free stream velocity V and thickness scale L. and exponential velocity and vorticity

FIGURE 2 — Acoustic pressure normalized to the wall value. as a function 0d dimensionless
distance from the wall Y a y/L, for fixed free stream Mach number M=I.25 and dimensionless
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