

Proceedings of The Institute of Acoustics

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR '

Lawrence M.L.Casser1ey

Royal College of Music, London

INTRODUCTION
A low-cost programmable digital signal processor has been

developed, which enables real-time audio transformations to be
effected. The board can be interfaced to a PCM recorder and a
microcomputer to provide an economical signal processing package
with applications in sound recording, electro-acoustic music,
acoustic research, etc. A brief description of the system-is
given, followed by a discussion of some practical software for the
processor. The paper also illustrates howthese program modules
may be combined to form practical devices.

PHI HARDWARE OVERVIEW

A block diagram of the system, known as SERIES PHI, is given in
Figure 1. One or more PHI processor boards are connected to two
independent busses. The first, the Control Bus, is used to
download programs and control data from the host computer. The
second, the Signal Data Bus carries audio samples between PHI
processors, AtoD and DtoA converters and other devices, eg long
delay memory. At present an interface card to a Sony PCM-7Dl
Digital Audio Processor provides two channels of 16 bit AtoD and
DtoA conversion as well as direct access to and from digital tape.
Other types of conversion could, however, be used. with this
interface the system is locked to the 44.1KB: sampling rate of the
PCM.

Figure 1. Block Diagram of PHI system.’

(ZCJII1TI?CDI; 131155

 Proc.l.0.A. Vol7 P5113 (1985) 105

Proceedings of The Institute of Acoustics

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR

A block diagram of the PHI processor board is shown in figure 2.
The CPU is a Texas TM532010 16/32 bit Signal Processor chip. Two
separate memories are used. The first appears as ROM to the 32010,
but canbe written into by the host computer. This is used for
storing programs and wave tables and occupies the normal address
space of the 32010. The second memory is accessed via two of the
32010'5 I/O ports and is used for passing dynamic parameters and
for storing delayed samples beyond what can be stored in the
32010’5 internal memory. On the prototype approximately lOOms of
delay is available. Longer delays will be handled off board by ,a
separate delay memory system being developed. The use of both
these memories and a number of other features of the PHI Processor
Board will be demonstrated in the following discussion.

PHI SOFTWARE EXAMPLE

Figure 3 gives the assembler listing for an example program,
MODULl. This illustrates a typical electro-acoustic music
application. The signal from an- AtoD converter is low-pass
filtered and ring-modulated with a sine wave, then reverberation
is added before sending the result to a DtoA converter.

The first two lines of the listing define the function as a series
of linked macros, which are expanded below. The figures in the
left-hand column are instruction cycles. The 5 MHz instruction
rate of the 32010 allows 112 instruction cycles per sample, and
the assembler automatically keeps a running count of instruction
cycles used.

Instruction 003 loads the input from Port 0; the assembler will
generate a link map for the Signal Data Bus which will route ADCO
to Port 0. The symbols 'OP' and ’IP’ are reserved in the PHI
assembler to indicate the outputs and inputs of macro 'devices'
which are linked according to the function definition at the
beginning of the code. '

Figure 2. Block Diagram of PHI Processor Board

m
e
w

V
O
W
-
M
O
O

[
M
W

F
D
H
Q
H
U
]

 106 Proc.l.O.A. 'Von Pans (1985)

Proceedings of The Institute of Acoustics

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR

Low Pass Filter _
Instruction 005 begins the code for a third order Chebyshev low
pass filterll]. First, a block of data is defined to hold the
delayed samples. This ensures that they are in the correct order
for most efficient implementation by the 32010. Next the
'coefficients are defined as parameters. The code illustrates use
of the 32010'5 pipelining facilities. The instruction 'LTD’ loads
a new data word into the multiplier, accumulates the previous
result and shifts the data to the next address in memory (hence
the necessity to specify a precise data structure). Thus a filter
of this kind can be implemented in two instruction periods per
term plus three (zero accumulator to start, accumulate and store
the final result to finish), a total of l7.in this case. Six such
filter segments could be implemented on one PHI board.

Sine Wave Generator
The next segment of code beginning with the label SGEN implements
a basic generator. The version shown assumes a half cycle sine (or
other) table is stored in main memory. This is adressed by the
lower twelve bits of the the accumulator during the 'TBLR' (table
read) instruction. The current phase angle and phase increment are
stored as double wordvariables allowing 28 bit resolution in the
phase calculations. The code at 035 determines which half of the
cycle is current and the final four instructions allow amplitude
control. This generator is somewhat moredemanding of processor
time, requiring 24 instruction periods, but could be simplified
for less demanding applications by using only 16 bit precision and
a whole cycle wave table.

Ring Modulator
By contrast this is extremely simple, in fact identical with the
level controller at the end of the generator segment. In the
former case it acts as an amplitude modulator as long as the
'LEVEL' parameter is constrained to be a positive number. It also
depends on the assumption that both inputs have no offset
component.

Reverberation
The reverberation algorithm utilises a tapped delay line in the
upper partof parameter memory. The number of taps is selected to
fill the remaining processor time, in this case three are
possible. The quality of reverberation is therefore somewhat
dependent on what else is being done, but, in a programmable
system, these options, like the choice of generator complexity,
are made available tothe user.

The function is implemented in four sections. First the new table
addresses are calculated. Note that program iterations are used in
preference to a subroutine which only wastes time in this context.
Next the data transfers occur. Note that the board architecture
uses two 1/0 ports named PARCAPT and PARREL writing to PARCAPT
loads a new addressand "captures" the memory, preventing a host
write from interfering with the transfer. Reading from or writing
to PARREL transfers data and "releases" the memory into control of

PmIDA. Vol7 Part3 (1985) 107

Proceedings of The Institute of Acoustics

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR

the host once again. Reading from PARCAPT, however, also transfers
data but keeps the memory "captured" so that a write to the same

address can follow immediately. In this way the new sample is

written in the same position as the final tap. Next the delayed

samples are weighted and accumulated in the same manner as in the

low pass filter. Finally the reverberation product and the direct

signal are mixed and sent to the DAC.

The last part of the code implements a counter in one of the

32010'5 Auxiliary registers, which is used to control the transfer

of parameters at a rate of one per sample. This code is included

in all programs automatically by the PHI assembler.

HOST SOFTWARE

PHIASM is an interactive editor/assembler which is designed to
make the development of programs for the PHI Processor relatively

straightforward. Since the code is necessarily short, it keeps
both source and object files in memory and flags potential errors

as they are entered. It deals with all memory allocations and

automatically generates link maps for the Signal Data Bus and
Parameter Memory for use by the run-time controller. It also keeps
track of the number of instruction periods in use and pads unused

time with NOPs.

PHIPER is a run-time system which sets up the performance

environment, downloads programs and parameter data and sets up the
Signal Data Bus link map. It is designed to allow the interfacing

of a variety of control devices suitable to different
applications. Other program generation and run—time control

software is planned.

CONCLUSION

The PHI system has been developed over a number of years for the

author's own use as a performing musician. While the 112

instructions/sample rate of the PHI system presents some

restrictions, it can be seen from the above discussion that such a

device can implement viable and useful functions. The use of more

than one board in a system quickly increases the sophistication of
the possible sound transformations. Above all, its programmability

makes the system capable of implementing many different functions,

so that one unit can be equivalent to many individual devices.

[1]. I am indebted to Per Hartmann for assistance with the
mathematics of the Chebyshev filter.

108 ProcJ.O.A. Vo|7 Pana [1985)

Proceedings 0! The Institute of Acous't’ics

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR

Figure 3. Example Program Listing - MODULl

coo EFMODULI ADCO>CHLPP>RMODK1)>REV4>DACO '
SGEN>RMOD (2) ,

EX

000 PARLOAD: IN ',PREL ;input parameter
002 EINT '

003 ADCO: IN OP,PORTO :get sample

005 CHLPF:
5D IPM3 :define data block

IPMZ

IPMl
IP

0PM2

OPMl
0P

5P COEFI ;define parameters
COEFZ
COEP3
COEF4

COEFS

COEFG
COEF7

005 ZAC :filter algorithm
006 LT IPM3

007 MP! COEF4
008 LTD IPMZ

009 MPY COEF3
010 LTD IPMl
011 - MPY COEFZ
012 LTD IP
013 MPY COEFl

014 LTA OPMZ
015 MPY' COEF7
016 LTD 0PM1
017 HPY COEFG
018 LTD OP

019 MPY COEFS
020 APAC
021 SKCH 0P.1

022 SGEN: -

5P aDPHINC ;define parameters
LIMIT

BASE
LEVEL

FrocJDA Vol7 Part3 (1985) ’ 109

Proceedings of The Institute of Acoustics

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR

022
023
024
025
026
027
028
029
030
031
032
035
036
037
039
040
041
042
043
044
045

046
047
048
049

050

050
051
052
054
055
056
057
058
059
061
062
063

110

SCALE:

RMOD:

REVA:
&P

RESULTI:

RESULTZ:

ZALH PHANG :update phase angle
ADDS PHANG + 1

ADDH PHINC
ADDS PHINC + 1

EACH PHANG.0

SACL PHANG + l

LAC PHANG
AND LIMIT :prevent overflow

SACL PHANG
0R BASE :must be pwr of 2
TBLR SAMPLE

LAC PHANG :which half cycle?
SUB BASE
BLZ SCALE
ZAC :negate sample
SUB SAMPLE
SACL SAMPLE
LT SAMPLE ;1eve1 control
MPY LEVEL ;must be positive
PAC '

SACH 0P,1

LT IP(1) ;4 quadrant mult

MPY IP(2)
PAC

SACH 0P.1

DELI ;define parameters
DELZ
DELEND
TABLEND ;end of storage
OFFSET ;start of storage
TESTER ;equals offset + l
DIRLEVEL

COEFI

COEFZ

COEF3
COEF4

LAC DEL1,0 ;advance pointer
SUB TESTER,0
BGEZ RESULTI
ADD TABLEND,0
ADD 0FFSET,0
SACL DEL]
LAC DELLO :rpt for each tap
SUB TESTER,0

BGEZ RESULT2
ADD TABLEND,0

ADD OFFSET,0

SACL DELZ

frocmA. Von Pan: (1535)

Proceedings of The Institute of Acoustics '

SOFTWARE FOR A REAL-TIME DIGITAL SIGNAL PROCESSOR

0 6 4 LAC DELEND . O

065 SUB TESTER,0
064 ‘ BGEZ RESULT}

066 ADD TABLEND,0

Q67 RESULT}: ADD OFFSET, O

068 SACL DELEND

069 OUT DELI, PARCAPT :get data

071 IN DDATl, PARREL

073 OUT DELZ, PARCAPT

075 IN DDATZ, PARREL

077 OUT DELEND, PARCAPT

079 IN DDAT3, PARCAP’I‘

081. OUT IP, PARREL

083 ZAC :accumulate delays

084 LT DDATI

085 - MPY COEFI
086 LTA DDATZ

087 MPY COEFZ

088 LTA DDAT3

089 MPY COEF3

090 LTA DDAT4

091 MPY COEF4

092 LTA IP ' :mix input

093 MPY DIRLEVEL

094 , APAC

095 - SACH 0P,1

096 DACO: OUT IP,PORTO ;result to DAC

097 PADNOP: ;pad with NOPS

109 PARADDR: SAR ARO. PAD;ARO points to

110 OUT PARCAPT, PAD ;next parameter

111 ‘ BANZ END

112 LAR ARO, NOPARS
113 END: NOP

 Proc.l.O.A. Vol7 Purl3 (1985) I 111

Proceedings of The Institute'of Acoustics

I12 Proc.l.O.A. 'VoI7 Pena (1935)

