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1 . ABSTRACT

in real speaker verification applications, additive or convolutive noise creates a mismatch between

training and recognition environments, degrading performance. Parallel Model Combination (PMC)

is used successfully to improve the noise robustness of Hidden Markov Model (HMM) based

speech recognisers [5]. This paper presents the results of applying PMC to compensate for additive

noise in HMM-based text-dependent speaker verification. Speech and noise data were obtained

from the YOHO [6] and NOISEX-92 databases [13} respectively. Speaker recognition Equal Error

Rates (EER) are presented for noise-contaminated speech at different signal-to-noise ratios (SNRs)

and different noise sources. For example, average EER for speech in operations room noise at

8dB SNR dropped from approximately 20% un-compensated to less than 5% using PMC. Finally, it

is shown that speaker recognition performance is relatively insensitive to the exact value of the

parameter that determines the relative amplitudes of the speech and noise components oflthe PMC

model.

2. INTRODUCTION

The goal of speaker verification is to confirm the claimed identity of a subject by exploiting individual

differences in their speech. It is useful to distinguish between text-dependent speaker verification,

where the decision is made using speech corresponding to known text, and text-independent

speaker verification. where the speech is unconstrained [4]. The present study is concerned with

the former. Text-dependent verification is clearly the simpler problem, and is amenable to word—

level acoustic modelling techniques from automatic speech recognition, and in particular the use of

HMMs.

it is well known that noise contamination of speech signals results in increased speech and speaker

recognition errors, due to the consequent mismatch between training and test conditions. and loss

of information. Hence considerable effort has been applied to the development of robust noise

compensation techniques. These techniques generally fall into two categories, speech pre-

processing and adaptation of the recognition stage. The first class of methods attempt to pre-

process the corrupted speech such that the resulting parameters are representative of clean

speech. Techniques in this category include spectral subtraction [2], and spectral mapping [11].

Examples of techniques that modify the recognition stage include noise masking [81, HMM

decomposition [12] and Parallel Model Combination (PMC) [5]. Methods based on pre-processing

are often computationally simpler. but have the disadvantage that any relevant information that is

discarded in the pre—processing stage cannot be recovered for use in recognition. The work in this

paper focuses on the second approach, and in particular on the use of Parallel Model Combination

(PMC) in which speech and noise HMMs are compiled into a single composite HMM prior to

recognition.
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PMC has been applied successfully to HMM-based automatic speech recognition, where it has

been shown to improve recognition performance on speech contaminated with additive noise [5].

This paper presents the results of experiments to investigate the utility of PMC for noise-robust

HMM based text-dependent speaker verification. Clean speaker verification data from the YOHO

database [61, designated as test data. was mixed with two different types of noises from the

NOISEX-92 database [13] at a range of different signal-to-noise ratios. This data was then)

processed using clean speech models combined with the appropriate noise models at the

appropriate mixing levels using PMC. The results show that PMC gives significant reductions in i

equal error rates. For example, un—compensated equal error rates of 20%, 33% and 45% (at +6dB, ‘

OdB and —6dB respectively) are reduced to 5%, 13% and 30% respectively using PMC. Further

experiments were conducted to measure the sensitivity of the PMC error rate to changes in the

value of the mixing level. The results show that performance is relatively insensitive to mixing level, i

and that restriction to seven different mixing levels only results in a small increase in error relative to

the experiments with correctly matched mixing levels. l

3. PARALLEL MODEL COMBINATION (PMC)

PMC is based on the premise that noise compensation should occur during the pattern processing

stage of speech or speaker recognition and not during parameterisation. In particular, the decision

that a component of the data is ‘noise' should emerge from the recognition process, rather than

precede it. in this way, all of the information contained in the speech signal is retained and

exploited for correct verification. Although similar to HMM decomposition [12], PMC has the

advantage that it is able to operate in the cepstral domain and therefore inherits the advantages of

parameter decorrelation. A method similar to PMC has also been investigated for text-independent

speaker recognition [9].

Let ()5 and am be single Gaussian states of a 'clean' speech HMM and a noise HMM respectively, in

the cepstral domain. Suppose that the means and variances of Us and cm are denoted by {#5225}

and MN”,ch ). PMC creates a combined cepstral state as 8) on by inverse-transforming {y‘g‘zsc}

and (11),”,ch ) into the linear, spectral domain (via the log spectral domain), combining them
appropriately into a single distribution, and then mapping this distribution back into the cepstral

domain. During this process, PMC makes a number of assumptions. It is assumed that speech ‘

and noise are independent, that they areadditive. and, during thecombination process, that the

sum of two log-normal distributions is log normal (51.

Both the static and dynamic (velocity and acceleration) parameters. which are normally included in

a cepstrum»based representation for speech recognition can be compensated using PMC.

However. in this study, only static parameters were compensated. as it was believed that

compensating for the delta and acceleration parameters would only bring marginal improvements in

performance as most of the speaker dependent characteristics will be removed by the differencing

process. The speech mean and covariance matrix in the log spectral domain are given by:

=C-lflc

’1 s
_ -l 0 —1T
-C 23(C)

I

S

21

S

where C is the cosine transform defined by the matrix

(5.,j = cos(i(j - 0.5)7r / B)

Proc.l.O.A. V0! 23 Part 3 (2001)



 

Proceedings of the Institute of Acoustics

Similar expressions exist for the parameters of the noise state. The mean and covariance matrices

for the state Us ® 0,. are then given by:

I I l
#S a N — log(exp(rls)+ gEXPwN»

Z! = log(exp(21 ) + gexpOZl ))
5 48 N S N

where gis a gain matching term which determines the signal-to—noise ratio.

4. EXPERIMENTAL DATA-

The experiments used speech data from three corpora: TIMIT, YOHO [6] and NOISEX-92 [13].
TIMIT was used to initialise a set of phoneme-level HMMs. because no phoneme transcriptions
were provided with YOHO.

Speech in the YOHO database is sampled at 6k samples per second. The corpus consists of
recordings of 138 subjects speaking connected digit phrases in an office environment. it was
chosen because of its established use in evaluation of speaker-dependent recognition systems. and
enables the results obtained from the present experiment to be compared with those from other
laboratories [3].

The NOlSEX-92 database contains a range of different types of noise. including speech noise, car
noise, and operations room noise. It has been used previously to investigate noise compensation
techniques for automatic speech recognition [5].

5. EXPERIMENTAL METHOD

5.1 ' Mixing Speech and Noise

The speech level was measured using a software implementation of the procedure described in [7],
which accounted for the silence intervals present in speech and only calculated the level for voiced
segments. Before applying this process, the speech data was amplitude scaled to V. of the
maximum 16-bit integer value to prevent saturation when noise was added. The speech signal was
then added to the scaled version of the noise signal to give noise contaminated speech signals at
+18dB to ~18dB at 2dB SNR intervals.

The actual scaling factor used to obtain a particular SNR varied between speakers and speech files.
Hence for each SNR the average scaling factor 9 was computed across all speakers. This scaling
factor was used in the construction of the PMC models for that SNR. An example of the distribution
of the scaling factor for a single SNR and different speakers and files is shown in figure 1.

Since experiments were performed on scaled data. the enrolment data was also scaled to prevent
any mismatch in the baseline results.
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Figure 1 Distribution of scaling factors at —18dB for operations room noise

5.2 HMM System

HMM training and recognition used the Hidden Markov Model Toolkit (HTK) system, which was
easily modified to accommodate PMC. Speech was parameterised into a 39 dimensional

representation based on Mel-Frequency Cepstral Coefficients (MFCC), using a 25ms Hamming

window. This included the 0‘h order energy term, plus velocity (A) and acceleration (A2) of each

coefficient.

initially, a total of 57 3-state, 4-component Gaussian mixture monophone HMMs were created using

the TlMlT database. These were later expanded to 78 tied-state triphones to cover all possible

pronunciations of connected digit pairs, e.g. 29_30_31. The triphones were subsequently used to

create speaker dependent models using speech from the YOHO database. For each speaker, all
24 utterances in each of 4 enrolment sessions were usedfor training.

Three noise models were created. each consists of single-state, single-component HMMs trained

using the NOISEX-92 database. The noises used in this paper were speech noise, operations room

noise and car noise.

5.3 Recognition and Scoring

Of the 138 speakers in YOHO. 118 were used as authorised speakers and 20 were used to train a

general speaker model (GSM) [10]. Furthermore. all 4 utterances in the 10 verification sessions

were used to calculate the False Reject Rate (FRR)‘ To calculate the False Accept Rate (FAR) for

each speaker, 40 utterances were randomly chosen from the test speaker set except the authorised
speaker to form an impostor set. The authorised speaker model (AS) was then used to recognise

utterances from the impostor set.

For both FRR and FAR, the GSM was used to normalise scores from the speaker dependent

models [1]. The decision rule used, for a particular threshold t, is as follows:

P(X l S) . , .
If — 21 then Accept. else ‘Reject’.

P()( | GSM)

The Equal Error Rate (EER) corresponds to the value of (for with FRR = FAR.
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6. EVALUATION

Four sets of experiments were carried out. F irst. the performance of the baseline system was tested
using clean speech. The second experiment investigated the degradation in performance when
noise contaminated speech was used in verification without PMC. Next, the same experiment was
performed using PMC with known SNR. The second and third experiments considered operations
room and car noise (as examples of 'typical' noises), and speech noise (as ‘worst case’). The
dependency of performance on the gain matching term, 9, was investigated. Finally. experiments
were conducted with unknown SNR.

6.1 Baseline System Performance

The EER achieved using clean verification speech was 0.57%. The target, therefore. was to get the
EER as close to this value for all SNRs.

6.2 Un-Compensated System Performance
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Figure 2 Graph of un-compensated results

The results without noise compensation for SNRs varying between —18dB and +18dB with steps of

2dB are shown in figure 2. The EER deteriorated at an average rate of 10% for every 6dB

reduction in SNR. This trend continued until performance levelled off at =50% EER ('random' error
for a two class problem). As expected, the performance degradations were much worse for
'speech' noise than for ‘operations room' noise. As for car noise, it was found that most of the
dominant frequency components are concentrated below 0.25kHz and this has an expanding effect

on the results on either side of +10dB. Performance will eventually achieve =1% and =50% EER at
+42dB and —42dB respectively. '
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6.3 Compensated System Performance
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Figure 2 Graph of compensated results

PMC compensation was performed using the average scaling factor obtained during speech and
noise mixing to set the gain matching term 9 (section 5.1). Seven PMC models were created with 9
set at +18dB, +12dB, +6dB, OdB, ~6dB, —12dB and —18dB. The reason for this reduced model set
will be evident in the following section where these seven models were used on a greater range of
SNRs. With PMC, performance at 18dB was close to the baseline result. Although performance
degradation was still observed as SNR was reduced. this was not as severe as the un-
compensated modeis. An average of 50% performance increase was observed between standard
and PMC recognition. However, this was only true until -12dB where the performance curve of PMC
rejoins that of standard recognition. As expected. performance with car noise is below 10% EER at
all SNRs.

6.4 Dependency on 9

To investigate the dependency of the EER on the gain matching term 9, experiments were
conducted in which the value of g was held constant while the SNR was varied between +18dB and
—18dB at steps of 2dB. Values of g which were considered correspond to +18, +12, +6, 0, -6, -12
and —18dB (figure 4,5r6). As one would expect, the results show that sensitivity to the absolute
value of 9 increases as SNR increases. However, the results show that performance of the system
is relatively insensitive to the exact value of g, and that for an SNR of RdB. good performance is
obtained with values of g corresponding to SNRs of RiGdB. This suggests that good speaker
verification performance can be obtained over SNRs ranging from +18dB to —18dB using PMC
models with g corresponding to no more that 7 different SNRs. For example, consider speech with
operations room noise at —6dB. The best performance is actually achieved using the value of g
which matches OdB SNR, and the error rates for values of 9 corresponding to —12dB, OdB and
+6dB are all within 10% of the error rate for the 'correct' value of g for —6dB.
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Operations Room Noise
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6.5 Unknown SNR

The final experiment considers the case where the SNR is unknown. Given a section of noise

contaminated speech y, the probability P(y|Mg) is calculated for the seven authorised speaker

models M9 for values ob corresponding to SNRs of —18dB, -12dB, -6dB, OdB, +603, +12dB and ‘
+18dB. The model M9 for which P(y|Mg) is greatest is used for verification. Similarly, the
probabilities PlylGSMg) are calculated for the general speaker models GSMg with values of 9
corresponding to the same seven SNRs and the model GSMg for which P(y|GSMg) is greatest is
used for verification. Figure 7shows the results of this experiment for speech mixed with operations

room, car and speech noise at SNRs between —18dB and +18dB at 2dB intervals. When compared
with figure 3, results show that given unknown SNR. performance for all three noise sources lie 1

between =0.1% of predicted values. Comparison with figure 2 shows that at 01:13, both speech and i
operations room noise have a compensated EER of 18.74% and 13.07% respectively as compared l
to 39.39% and 33.42% un-compensated. Compensated results for car noise remain below.6.62%
for all SNRs, as compared to un-compensated results of between 10.13% and 42.58%.
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7. CONCLUSION

This paper reports the results of experiments, which investigate the utility of Parallel Model

Combination (PMC) for noise—robust HMM-based text-dependent speaker verification. Speech data

was taken from the YOHO corpus. and noise data from NOISEX-92. The system used context-

sensitive phoneme-level HMMs with 4-component Gaussian mixture states. The results show that

the baseline EER of 0.57% for ‘clean' speech degrades rapidly as a consequence of contamination

with ‘speech' or 'operations room' noise. For example the clean speech EER of 0.57% drops to

33% and 41% respectively at MS SNR. Using PMC with the correctly matched gain factor 9, the

corresponding figures are 14% and 21%, and both EERs are below 10% at +6dB SNR. Finally. it

has been shown that performance is relatively insensitive to the exact value of the gain factor 9,

provided that it corresponds to a SNR that is within iSdB of the true SNR. By selecting the PMC

models that gives the highest probability, good result can be achieved for SNRs between —18dB

and +18dB.
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