
ACOUSTIC STREAMING IN RESONATORS WITH
HEATED WALLS
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Acoustic streaming in fluid-filled resonators with the spatial distribution of walls’temperature is
studied within this work. The method of successive approximations is employedto derive linear
equations for the calculation of ambient, primary acoustic, and time-averagedsecondary fields in-
cluding the mass transport velocity. The model equations have a standard form which allows their
numerical integration using COMSOL Multiphysics. The numerical results arevalidated for the
case of a resonator with spatially-constant ambient temperature by comparison with previously
published analytical results; an excellent agreement is found. Examples of acoustic streaming
structures in resonators with heated walls are given showing a strong influence on the walls’ tem-
perature distribution and the resonator cavity dimensions.
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1. Introduction

Acoustic streaming [1, 2, 3] refers to a second-order net mean fluid flow generated by and su-
perimposed on the first-order acoustic field. Within this work, an attention is paid to the boundary-
layer-driven acoustic streaming generated in the standingwave of an acoustic resonator. This type
of acoustic streaming plays an important role in thermoacoustics, see e.g. [4], or in acoustofluidics,
see e.g. [5, 6]. Here, we are particularly focussed on the behaviour of acoustic streaming in the
temperature-inhomogeneous fluids. This area is interesting from the practical point of view, as in
thermoacoustics, acoustic streaming serves as a means of unwanted heat transport, reducing the effi-
ciency of thermoacoustic devices; on the other hand, this effect could be employed for the cooling of
hot objects [7]. From the theoretical point of view, the interaction with the thermal fields could be the
cause of the discrepancies between theoretical predictions and the experimental data [8, 9].

Behaviour of acoustic streaming in temperature-inhomogeneous fluids can be, and has been stud-
ied in a rather straightforward way by the methods of the computational fluid dynamics [10, 11, 12,
13, 14, 15]. However, these methods require great amount of computational effort, which makes the
study of acoustic streaming, especially in larger geometries, very difficult.

Within Section 2 of this paper, we propose a simplified mathematical model based on the method
of successive approximations, allowing study of the interaction of acoustic streaming with a thermal
fields using a reasonable computational resources. The numerical procedure, employing commercial
software COMSOL Multiphysics, is briefly described in Section 3. Examples of numerical results are
given in Section 4, some conclusions are drawn in Section 5.
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2. Mathematical model

Theoretical study of acoustic streaming usually starts with Nevier-Stokes equations

dρ

dt
= −ρ∇ · u, (1a)

ρ
du
dt

= ∇ · σ + f, (1b)

ρcp
dT

dt
− αT

dp

dt
= ∇ · (κ∇T ) + τ : ∇u, (1c)

see e.g. [16], whereρ is the density,u is the velocity vector,T is the temperature,p is the pressure,f is
the body force density, if the resonant channel is driven by an inertial force (by entire-body shaking) it
readsf = −ρa(t), wherea(t) is the channel’s acceleration. Further,cp is the specific heat capacity at
constant pressure,α is the isobaric coefficient of volumetric thermal expansionandκ is the coefficient
of thermal conduction. The total stress tensorσ is defined as

σ = −pI + τ = −pI + µ
[

∇u + (∇u)T
]

− 2µ

3
(∇ · u)I, (2)

whereτ is the viscous stress tensor,µ is the shear viscosity, andI is the identity matrix. In this
study, it is assumed that the shear viscosity and the coefficient of thermal conduction are temperature-
dependent.

In Eqs. (1), the material derivative is defined asd(−)/dt = ∂(−)/∂ + (u ·∇)(−). It is assumed
that the fluid is an ideal gas for which the state equation has the formp = ρRT , whereR is the
specific gas constant and thusα = −(∂ρ/∂T )p/ρ = 1/T .

Within this work, set of Eqs. (1) is solved using the method ofsuccessive approximations the same
way as in work [17]. It is assumed that the field variables can be expressed as series

p = p0 + ǫp1 + ǫ2p2 + . . . , u = ǫu1 + ǫ2u2 + . . . ,
ρ = ρ0 + ǫρ1 + ǫ2ρ2 + . . . , a = ǫa1,
T = T0 + ǫT1 + ǫ2T2 + . . . ,

whereǫ ≪ 1 is a small dimensionless parameter (corresponding to the acoustic Mach number),p0,
ρ0 andT0 are the ambient quantities (without sound) considered as constants in time. It is assumed
that p0 = const., T0 = T0(r) andρ0 = ρ0(r) = p0/RT0(r). Further,p1, ρ1, T1 and u1 are the
primary acoustic variables supposed to be harmonic with angular frequencyω, which is the frequency
of driving. The quantities with indices bigger than one are the nonlinearly generated terms; in this
case, the terms with indices bigger than two are neglected.

Within the method of successive approximations, the above series are substituted into Eqs. (1) and
the equations for the same order ofǫ are found.

For ǫ0, we obtain
∇ · (κ0∇T0) = 0, (3)

whereκ0 = κ(T0).
For ǫ1, we can write

∂ρ1
∂t

+∇ · (ρ0u1) = 0, (4a)

ρ0
∂u1

∂t
−∇ ·

{

−p1I + µ0

[

∇u1 + (∇u1)
T
]

− 2µ0

3
(∇ · u1)I

}

= −ρ0a1, (4b)

ρ0cp0

(

∂T1

∂t
+ u1 ·∇T0

)

− ∂p1
∂t

−∇ · (κ0∇T1) = 0, (4c)
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wherecp0 = cp(T0), µ0 = µ(T0), together with the linearised state equationp1/p0 = T1/T0 + ρ1/ρ0.
Equations (4) can be used for calculation of the primary acoustic field.

For ǫ2 the equations for the steady state, see e.g. [17], can be written in form

∇ · (ρ0ū2) = M, (5a)

−∇ ·
{

−p̄2I + µ0

[

∇ū2 + (∇ū2)
T
]

− 2µ0

3
(∇ · ū2)I

}

= F, (5b)

ρ0cp0ū2 ·∇T0 −∇ · (κ0∇T̄2) = Q, (5c)

where the bar denotes the one-period-averaged quantities.
The source terms in Eqs. (5) read

M = −∇ · 〈ρ1u1〉, (6a)

F = −
〈

ρ1

(

a1 +
∂u1

∂t

)〉

− ρ0〈(u1 ·∇)u1〉

+∇ ·
〈

µ0bµ
T0

T1

[

∇u1 + (∇u1)
T − 2

3
(∇ · u1)I

]〉

, (6b)

Q = −cp0

〈

ρ1
∂T1

∂t

〉

− ρ0cp0 〈u1 ·∇T1〉 − cp0〈ρ1u1〉 ·∇T0 + 〈u1 ·∇p1〉

+∇ ·
〈

κ0bκ
T0

T1∇T1

〉

+ µ0

〈[

∇u1 + (∇u1)
T −

(

2

3
− Ṽ

)

(∇ · u1)I

]

: ∇u1

〉

. (6c)

where〈fg〉 = ℜ[f̃ g̃∗]/2; the tildes represent the complex amplitudes of the corresponding quanti-
ties and the asterisk stands for the complex conjugate. Further, bµ = T0(∂µ/∂T )T0

/µ0 and bκ =
T0(∂κ/∂T )T0

/κ0.

3. Numerical procedure

The formerly presented equations were solved numerically in axi-symmetric cylindrical coordi-
nates using software COMSOL Multiphysics as follows.

First, ambient fluid temperatureT0 is calculated using the Heat Transfer in Fluids, Stationarystudy
type, which implements Eq. (3). As a boundary condition, prescribed wall temperature distribution is
used.

Second, primary-field quantitiesp1, u1, T1 andρ1 are calculated using the Linearised Navier-
Stokes, Frequency-domain study type, which implements Eqs. (4). As the boundary conditions,
isothermal no-slip ones were used at the walls; symmetry wasemployed at the symmetry-axis, see
Fig. 1.

Third, time-averaged quantities̄p2, ū2, T̄2 and ρ̄2 are calculated using the Linearised Navier-
Stokes, Frequency-domain study type (with frequency set to0 Hz), which implements Eqs. (5). As
the boundary conditions, isothermal no-slip ones were usedat the walls; symmetry was employed at
the symmetry-axis. The source terms (6) were evaluated using the primary-field quantities calculated
in the previous step.

The numerical calculations were performed on a structured (mapped) mesh refined along the
resonator walls.

4. Results

In all the numerical results presented below, air at normal atmospheric pressure was used as the
medium filling the cylindrical resonator of lengthL = 30 cm and radiusR = 1.5 cm.
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Figure 1: Geometry of the problem.

4.1 Comparison with an analytical model

In order to validate the numerical results, they were compared with the ones obtained using the
analytical model [18] for the constant ambient fluid temperature, which was set toT0 = 20 ◦C. Driving
acceleration with amplitudea1 = 5.49m/s2 and direction along the channel axis was used for driving;
the frequency of driving was set to the first resonance frequency fres = 569.2Hz. In this case, the
ratio of the resonator radius and the viscous boundary layerthicknessR/δv = 163.4, whereδv =
√

2µ/ρ0ω.
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Figure 2: Acoustic pressure and velocity amplitude distribution along the axis of a resonator driven
at theλ/2 resonance.

Figure 2 shows the comparison of the primary-field quantities along the resonator axis. It can be
seen that the numerical model (blue line) predicts lower amplitudes than the analytical model (red
line). This is caused by the fact that the analytical model [18] does not take into account thermal
losses at the resonator end-walls (z = 0 andz = L). If these losses are removed from the numerical
model (by imposing the adiabatic end-walls), the analytical model and the numerical model (pink
line) provides the same results.

The streaming velocity (z-component) calculated using the current model is comparedwith the
Rott’s approximate formula [19, 18] valid forR ≫ δv:

ūz = uR

[

1 +
2

3
(γ − 1)(1− bµ)

√
Pr

1 + Pr

]

(

1− 2r2

R2

)

sin 2kz, uR =
3

8

u2
0

c0
, (7)

whereγ is the adiabatic exponent, Pr is the Prandtl number,k is the wavenumber,c0 is the speed of
sound, andu0 is the maximum longitudinal velocity amplitude along the resonator axis. The quantity
uR is so-called Rayleigh streaming velocity.
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Figure 3: Normalized streaming velocity along the resonator axis; driving at theλ/2 resonance.
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Figure 3 shows the streaming velocity along the resonator axis normalized by the Rayleigh ve-
locity calculated by the current model (blue line) and employing the Rott’s formula (7) (red line). It
can be seen that the numerical and analytical results slightly differ, which can be attributed to the
simplifications in Eq. (7).

4.2 Streaming in temperature-inhomogeneous fluid

Let’s assume the resonator walls with the temperature distribution given as

Tw =
∆T

2

[

1 + cos

(

2πz

L

)]

+ Tw0, (8)

whereTw0 is the minimum temperature of the resonator walls and∆T is the maximum temperature
difference. The formula (8) serves as the boundary condition for Eq. (3) for calculation of the fluid
ambient temperatureT0(r). In all the following cases,Tw0 = 20 ◦C and temperatures∆T differ.

The wall temperature distribution (8) corresponds to the case of the thermoacoustically-driven
heat transport along the resonator walls from acoustic-velocity antinode towards the acoustic-velocity
nodes, see e.g.[8].
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Figure 4: Streaming in the resonator with individual temperature differences∆T =
0, 20, 40, 60, 80, 100 ◦C; driving atλ/2 resonance frequency.

Figure 4 shows the streamlines in the resonator for individual values of∆T = 0, 20, 40, 60, 80, and
100 ◦C. In all the cases, the resonator is driven at its first resonance frequency. The counter-clockwise-
rotating streaming cells are depicted in red colour, the clockwise-rotating streaming cells are depicted
in blue colour. It can be observed that with increasing temperature difference∆T , additional outer
vortices appear in the centre of the resonator.

The reason for emergence of the additional streaming cells can be seen in Fig. 5. The imposed
temperature inhomogeneity supports the streaming near theresonator ends (streaming velocity in-
creases); whereas the streaming is opposed in the central part – streaming velocity decreases and
for ∆T ' 30 ◦C. the streaming velocity reverses its direction giving riseto the emergence of the
additional vortices.
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Figure 5: Normalized streaming velocity along the resonator axis for individual values of the temper-
ature difference∆T = 0, 20, 40, 60, 80, 100 ◦C.

5. Conclusions

Linearised model equations have been derived for the description of the primary as well as steady-
state secondary fields in acoustic resonators with heated walls. These equations have a standard form
of linearised Navier-Stokes equations, so that they can be solved in a straightforward way employing
an universal solver; in this case, COMSOL Multiphysics was used.

The numerical results show that the fluid temperature inhomogeneity can result in the appearance
of additional vortices, if the temperature difference is big enough. The additional vortices appear (are
more prominent) for bigger rationsR/δv.

The proposed mathematical model takes into account the influence of temperature inhomogene-
ity on the acoustic and steady-state streaming field, however, it does not account for the acoustic
streaming as a means of the advective heat transport, which influences back the fluid temperature
distribution. It means that the proposed model is only validfor small values of the streaming veloc-
ity. Addressing this issue would require a more comprehensive mathematical model, which is the
subject of our future work. In any case, the current results indicate that the streaming dynamics in
temperature-inhomogeneous fields, thanks to the feedback effects, can be rather complex.
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