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Functionally graded materials (FGMs) belong to a class of advanced materials characterized by
variation in properties as the dimension varies. Propagation of elastic waves through FGMs is
an issue of scientific and practical interest because the effective use of elastic waves in the in-
dustries relies on a good understanding of wave propagation in FGMs. The propagation of one-
dimensional elastic waves in a plate made of FGMs excited by a harmonic force is described and
studied in this work. The corresponding model equation is solved analytically and its solution is
based on the local Heun functions. The elastic waves are investigated by means of the transmission
coefficient, which can be utilized in study of transmission properties of locally periodic structures.
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1. Introduction

Functionally Graded Material (FGM) belongs to a class of advanced materials with varying prop-
erties over a changing dimension. Functionally graded materials, eliminates the sharp interfaces ex-
isting in composite material which is where failure is initiated. It replaces this sharp interface with
a gradient interface which produces smooth transition from one material to the next. One unique
characteristics of FGM is the ability to tailor a material for specific application.

The gradient material can be conveniently described by the use of a transition function represents
the volume fraction of one of the phases as a function of position. In many practical cases the com-
positional variation is restricted to one coordinate. Mainly, FGMs, which are compositionally graded
from a ceramic phase to a metal phase, attract great attention. The ceramic/metal FGMs can be de-
signed to reduce thermal stresses and take advantage of the heat and corrosion resistances of ceramic
and the mechanical strength, high toughness good machinability and bonding capability of metals
without severe internal thermal stresses. The ceramic/metal FGMs exhibit higher fracture resistance
parameters resulting in higher toughness owing to crack bridging in a graded volume fraction. Due to
the high mechanical and thermal properties of the constituent materials, the ceramic/metal FGMs can
exhibit good service performance under some severe environments, such as super high temperature
and great temperature gradient, see e.g.[1].

This work extends the current group of material-property-transient functions for which exact ana-
lytical solutions are known and it also meets the requirement of a smooth connection to the neighbor-
ing regions with constant material parameters. To accomplish this intention, we used a trigonometric
transition function for the material composition in a FGM rod plate. For this function, it is possible to
transform the original model equation into Heun’s differential equation of which an exact solution is
expressed in terms of the local Heun functions. In the last ten years we have witnessed an increased
interest in Heun’s equation, which is due to the fact that this equation is the most general canonized
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linear second-order Fuchsian equation containing four regular singularities. This structure of singu-
larities causes that the Heun functions as solutions of Heun’s equation are increasingly appearing in
the modeling of different types of problems in many areas of physics and are implemented and they
are implemented in some widely used mathematical softwares, e.g. Maple.

2. Model equation

We assume a FGM rod plate of thickness d which is compositionally graded from material MI to
MII . Longitudinal propagation of elastic waves through a continuously inhomogeneous rod can be
described by means of the following model equation (see e.g. [2])

∂2u(x, t)

∂x2
+

1

E(x)

dE(x)
dx

∂u(x, t)

∂x
=

1

c2L(x)

∂2u(x, t)

∂t2
, (1)

where u(x, t) is an axial displacement of the rod at position x and time t, and cL(x) =
√
E(x)/ρ(x)

is a speed of longitudinal elastic waves.
To solve Eq. (1) it is convenient to rewrite it into its dimensionless form:

∂2U(s, θ)
∂s2

+
1

η(s)

dη(s)
ds

∂U(s, θ)
∂s

=
1

C2(s)

∂2U(s, θ)
∂θ2

, (2)

Here

s =
x

`
, θ = ωt U =

u

`
, C(s) =

cL(s)

ω`
,

where ` is a characteristic length and

η(a, σ; s) = 1 +
EII − EI

EI
sin2(s− σ) = 1 + a sin2(s− σ) , (3)

ξ(b, σ; s) = 1 +
ρII − ρI
ρI

sin2(s− σ) = 1 + b sin2(s− σ) , (4)

where E is Young’s modulus, ρ is the mass density and the indexes I , II correspond to the chosen
constituent materials MI , MII .
Substituting for the material-property-transient functions η(s) and ξ(s) from the relations (3), (4) and
limiting ourselves to the harmonic solutions of Eq. (1), i.e. U(s, θ) = U(s) exp(−jθ), where j =

√
−1

is the imaginary unit, we can write the model equation as

d2U(s)

ds2
+

a sin(2(s− σ))
1 + a sin2(s− σ)

dU(s)
ds

+K2 1 + b sin2(s− σ)
1 + a sin2(s− σ)

U(s) = 0 , (5)

where K2 = ω2`2ρI/EI . The equation (5) represents a generalization of Ince’s differential equation
(see e.g. [3]).

3. Transformation of the model equation and its solution

To transform Eq. (5) to Heun’s equation we introduce the following variable

z = sin2(s− σ) . (6)

After some algebra, we obtain Heun’s equation

d2U

dz2
+

(
1

2z
+

1

2(z − 1)
+

1

z + 1/a

)
dU
dz
− bK2z +K2

4az(z − 1)(z + 1/a)
U(z) = 0 . (7)
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Based on the comparison with the canonical form of Heun’s equation (see e.g. [4, 5])

d2U

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − q

)
dU
dz

+
αβz − g

z(z − 1)(z − q)
U(z) = 0 , (8)

we get

γ =
1

2
, δ =

1

2
, ε = 1 , g =

K2

4a
, q = −1

a
. (9)

On the basis of the comparison with the canonical form of Heun’s equation (6) and the Fuchsian
condition 1 + α + β = γ + δ + ε (see e.g [4, 5]) we obtain

αβ = −bK
2

4a
, α + β = 1 . (10)

Solving the system of equations (10) we can write

α =
1

2
+

1

2

√
1 +

bK2

a
, β =

1

2
− 1

2

√
1 +

bK2

a
. (11)

The general solution of Eq. (8) is given as (see e.g [4, 5, 6])

U(z) = A1H`(q, g;α, β, γ, δ; z) +

A2z
1−γH`(q, (qδ + ε)(1− γ) + g;α + 1− γ, β + 1− γ, 2− γ, δ; z) , (12)

where A1, A2 are integration constants and H` represents the local Heun function with appropriate
parameters (see e.g [4, 5, 6]).
Substituting from the relations (6), (9) and (11) into the solution (12) we obtain the general solution
of Eq. (5)

U(s) = A1H`

−1

a
,
K2

4a
;
1

2
+

1

2

√
1 +

bK2

a
,
1

2
− 1

2

√
1 +

bK2

a
,
1

2
,
1

2
; sin2 (s− σ)

+

A2 sin (s− σ)H`

−1

a
,
2a− 1 +K2

4a
; 1 +

1

2

√
1 +

bK2

a
, 1− 1

2

√
1 +

bK2

a
,

3

2
,
1

2
; sin2 (s− σ)

)
≡ A1H11(s) + A2 sin (s− σ)H12(s) ; sin

2(s− σ) < 1 . (13)

As the local Heun functions are evaluable only for their arguments from the interval [0, 1) the condi-
tion sin2(s− σ) < 1 in Eq. (13) has to be satisfied, see e.g. [4].

Without loss of generality, we will search for the solution of Eq. (13) in the closed interval [0, π/2],
which enables us to fulfill the requirement concerning the smooth connection of the inhomogeneous
region to the neighboring homogeneous regions. However, it is necessary to pay attention to the fact
that the solution (13) is valid only in the half-closed interval [0, π/2) where the absolute value of the
argument of the Heun functions is less than 1, which is the regular singular point.

To overcome the problem we can employ the ensuing variable transformation

y = 1− z , (14)

which means that the neighborhood of z = 1 is transformed into the neighborhood of y = 0. Using
the transformation (14) Heun’s equation (8) can be rewritten for the parameters (q, g, α, β, γ, δ) into
the form

d2U

dy2
+

(
γ̃

y
+

δ̃

y − 1
+

ε̃

y − q̃

)
dU
dy

+
α̃β̃y − g̃

y(y − 1)(y − q̃)
U(y) = 0 , (15)
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where
q̃ = 1− q , g̃ = αβ − g , α̃ = α , β̃ = β , δ̃ = γ , γ̃ = δ . (16)

The general solution of Eq. (15) is

U(s) = B1H`
(
q̃, g̃; α̃, β̃, γ̃, δ̃; cos2(πs− σ)

)
+

B2 cos(πs− σ)H`
(
q̃, (q̃δ̃ + ε̃)(1− γ̃) + g̃; α̃ + 1− γ̃, β̃ + 1− γ̃, 2− γ̃, δ̃; cos2(πs− σ)

)
= (17)

B1H21(s) +B2 cos(πs− σ)H22(s) , | cos2(πs− σ)| < 1 ,

where B1, B2 are integration constants. This solution represents the solution of the model equation
(13) around the point s = π/2 including this point. To employ both the solutions we will divide
the closed interval [0, π/2] into two intervals [0, s1] and [s1, π/2] where 0 < s1 < 1/2. For the first
interval we have the solution (13) and for the second one, we have the solution (17).

3.1 Illustrative example

As an illustrative example that demonstrates the applicability of the above-mentioned results we
can solve Eq. (13) on the closed interval [0, π/2] for the parameter σ = 0 and initial value conditions:

U(0) = 1 and
dU(s)

ds

∣∣∣∣∣
s=0

= 0 . (18)

Using the boundary conditions we obtain A1 = 1 and A2 = 0. Then, we can calculate the integration

MI = Al MII = Al2O3

Aluminium Alumina
E (GPa) 70.0 393.0
ρ (kgm−3) 2707 3960

Table 1: Material properties of considered constituents.

constants B1 and B2 based on the continuity conditions of the solutions (13) and (17) at the point
0 < s1 < π/2, i.e.

A1H11(s1) = B1H21(s1) +B2 cos(πs1)H22(s1) (19)

and

A1
dH11(s)

ds

∣∣∣∣∣
s=s1

=
d
ds

(B1H21(s) +B2 cos(πs)H22(s))
∣∣∣∣
s=s1

. (20)

The Heun functions are evaluated for the material parameters from Tab. 1. Solving Eqs. (19) and (20)
we obtain values of the integration constants B1 and B2. The solution of Eq. (13) and its derivative
for the whole interval [0, π/2] is depicted in Fig. 1. We used the mathematical software Maple in
which the local Heun functions and their derivatives are implemented.

4. Transfer matrix calculation

Employing the same approach as in the previous section it is possible to calculate the transfer
matrix, however it is again necessary to take into account the fact that the point π/2 is the regular
singular one. In the following text, we will consider the parameter σ to be equal to 0.
Based on the solution (13) we can write(

U(s)
U ′(s)

)
= T(1) (s, s0)

(
U(s0)
U ′(s0)

)
; s0 = 0 ≤ s <

π

2
, (21)
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Figure 1: Solution of Eq. (5) for the parameter σ = 0, the material constituents from Tab. 1, and the
initial value conditions (18) (a) and its derivative (b).

where the prime denotes the derivative with respect to s and T(1) is the transfer matrix

T(1) (s, s0) =


H11(s)H′

12(s0)−H12(s)H′
11(s0)

H11(s0)H′
12(s0)−H12(s0)H′

11(s0)

−H11(s)H12(s0)+H12(s)H′
11(s0)

H11(s0)H′
12(s0)−H12(s0)H′

11(s0)

H′
11(s)H

′
12(s0)−H

′
12(s)H

′
11(s0)

H11(s0)H′
12(s0)−H12(s0)H′

11(s0)

−H′
11(s)H12(s0)+H′

12(s)H11(s0)

H11(s0)H′
12(s0)−H12(s0)H′

11(s0)

 .
Supposing a point s1 from the interval 0 < s1 < π/2 then we have(

U(s)
U ′(s)

)
= T(2)(s, s1)

(
U(s1)
U ′(s1)

)
, s1 ≤ s ≤ π/2 , (22)

where

T(2)(s, s1) =


H21(s)H′

22(s1)−H22(s)H′
21(s1)

H21(s1)H′
22(s1)−H22(s1)H′

21(s1)
−H21(s)H22(s1)+H22(s)H21(s1)
H21(s1)H′

22(s1)−H22(s1)H′
21(s1)

H′
21(s)H

′
22(s1)−H

′
22(s)H

′
21(s1)

H21(s1)H′
22(s1)−H22(s1)H′

21(s1)

−H′
21(s)H22(s1)+H′

22(s)H21(s1)

H21(s1)H′
22(s1)−H22(s1)H′

21(s1)

 . (23)

Then, the transfer matrix for the whole interval [0, π/2] can be calculated based on the two transfer
matrices (22) and (23)

T = T(2)(π/2, s1)T
(1)(s1, 0) . (24)

By means of the overall transfer matrix (24) we can calculate the reflection and transmission coeffi-
cients for wave propagation through the region [0, π/2].
The above mentioned calculations of the transfer matrices are also easy applicable for the case of
σ = π/2.

5. Conclusion

In this work, we dealt with longitudinal elastic waves propagating through a rod plate that is
fabricated of FGM. We assumed the material composition in the FGM plate to be distributed ac-
cording to a trigonometric transient function that ensures the zero derivatives of material density and
Young’s modulus at the endpoints, in which the plate is connected to the homogeneous regions. We
analytically solved the equation which models elastic waves in the FGM plate. The model equation
represents the generalized form of Ince’s differential equation that can be transformed to the canonical
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form of Heun’s equation. The general solution of this equation is expressed by means of the local
Heun functions. To accomplish the requirement concerning smooth connections to neighboring ho-
mogeneous regions it is necessary to evaluate the solution of Heun’s equation on the closed interval
which includes two regular singular points. We presented a method that enables us to resolve this
problem. To demonstrate the applicability of the method we presented illustrative example of the
model equation solution for given material constituents. In addition, based on this method we also
present transfer matrix calculation.
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