
  

Proceedings of the Institute of Acoustics

ACOUSTICS OF FLUID-FILLED, SMALL CAVITIES : THEORETICAL MODELS AND
APPLICATIONS.

M Bruneau

laboratoire d'Acoustique, Associe au CNRS, Université du Maine, Avenue Olivier Messiaen, BP
535, 72 017 Le Mans cedex, France.

ABSTRACT

The purpose of this paper is to present the main developments in the theory of the acoustics of
dissipative fluids at rest in hounded spaces (principally cavities of different sizes and shapes),
from the early beginnings (in the 1850‘s) until now, including a brief indication of possible
approaches for future developments.

Several applications of interest. and current research concerned with miniaturisation, are
presented, with emphasis being given to the work done on the acoustic gyrometer and on its
potential to be miniaturized, which includes the miniaturiution of acoustical transducers (on
silicon chips).

l. lNTRODUCTlON

The aim of this paper is to outline the main developments towards obtaining a description of the
linear, dynamic behaviour of viscous heat-conducting compressible fluids at rest. It will deal with
bounded spaces in general but focus particularly on small cavities and thin fluid layers, For more
than 100 years, there has been a very strong motivation to get a good description of wave
propagation in tubes. which takes into account the dissipative effects, as a lot of well known
applications require good theoretical models for waveguides (including the widely used capillary
tubes). In addition, since the early 1930's there has been increasing attention given to small
cavities, particularly for the design and calibration of transducers [l,2,3,4,5,6], and since the
1970's, for measuring the properties of gases from precise measurements of the speed of sound
(7.8]. More recently there have been devices like the acoustic gyro [9], and the application of
trapped thin fluid layers for vibration damping and the optimisation of transducers performance.

Generally speaking. the need for accurate models of the acoustic fields in smaller and smaller
fluid-filled cavities, fluid films or guides is becoming very important as the growing demand for
miniaturized tools (transducers. etc.), and the widespread use of silicon technology, has focuses
our interest on designs on silicon chips.

The purpose of the paper is three fold: -fil’51 to show the developments in the theory related to
acoustics in dissipative fluids in bounded spaces, with a brief historical outline then a more in-
depth discussion of the advances of the last ten years (section 2). —secondly to give examples of
applications which need models derived from the theoretical results, attention being focuSed on the
acoustic gyro (section 3). -and thirdly to describe the work that is required by the current levels of
miniaturization and from new, non conventional demands on the behaviour of the devices
properties (concerning the response. frequency range, precision, etc.), which will motivate future
research (section 4).
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2. DEVEOPMENTS IN THE THEORETICAL ASPKTSSHORT HlSTORY.

. eearl studies on diss' alive enomena in fluids 1 .
Energy loss from the sound wave in fluids can basically be separated into three distinct processes :
-the transfer of momentum from the sound wave due to the effect of viscosity -the transfer of heat
from the regions of “high” temperature to those of lower temperature, converting the energy of the
sound wave into random thermal motion of fluid molecules -the transfer of energy from the
translational energy of the fluid to internal energy modes and back which takes place during
collisions between the fluid molecules. this process of transferring energy back and forth
introducing a time lag between the time needed for the local pressure to decrease and the time
needed for the internal energy modes to give back to the translational modes [11.12.13].

The theory has a relatively short history dating from the 1820's. The subjects of heat conduction
and shear viscosity were the first to be treated (1822—1845) although a thorough understanding of
the mechanisms of acoustic dissipation only come about somewhat later (1868-1899).

The first fundamental investigation was that concerning the diffusion of heat from regions of
"high" temperature (linked, in acoustics. to compressions) to those of lower temperature (linked,
in acoustics. to rarefactions). Jean BJ. Fourier(l768—1&§0) was involved with this problem at the
very beginning of the 19th century, but he completed his work on heat flow only in 1822 in a book
entitled “Analytic Theory of Heat" (note that at the same period he also discovered what is now
called Fourier's theorem) [14]. -

The second investigation to be noted on dissipative phenomenon which is another remarkable one,
is that by Stokes on the dissipation due to the shear viscosity effects (1845) [15] who gave us the
fortn of the dissipative shear viscosity term in the fundamental equation ofdynamics. Sir George
G. Stokes (1819—1903) worked on the theory ofviscous fluids between 1845 and 1850. He
deduced what is now called Stokes‘s law that could be applied to the motion of a small sphere
falling through a viscous medium to obtain its velocity under the influence of a known force such
as gravity. (His work also included studies on fluorescence, sound, and on light; he was amongst
the first to suggest in 1896 that the X-rays, newly discovered by Roentgen, were an
electromagnetic radiation akin to light.)

But it is Kirchhoff’s pioneering papers of 1868 [16], treating the viscous and thermal dissipation
effects in acoustics, that can be considered to mark the beginning of modern theory of acoustic
propagation in viscous and thermal conducting fluids. Gustav R. Kirchhoff was born on 12th
March 1824 and died on 17 October 1887. Kirchhoff’s major contribution to physics was his
experimental discovery and accompanying theoretical analysis in l839 of a fundamental law of
electromagnetic radiation : for all material bodies, the ratio of absortive and emissive power for
such radiation is a universal function of wavelength and temperature. He introduced later (1862)
the concept of a black body. Outstanding among his other contributions was his early work on
electrical currents (1845-1849) and on the propagation of electricity in conductors (1857).
Kirchhoff was a master at formulating a logical concept of physical phenomenon thus leading to a
coherent systems free from hypothetical elements, and in 1868 he produced the very fertile
description of sound propagation in gases mentioned above. This theory was mainly based on the
Navier-Stokes equation which includes the effects of shear and bulk viscosity. and the Fourier
equation of heat conduction modified to account for linear acoustics approximations. He derived
an algebraic equation (dispertion equation) and he found a solution to iLthat is, the propagation
constant. for plane waves and outgoing spherical waves in an unbounded medium and for waves
propagating along the axis of a circular tube. In the latter case, he assumed boundary conditions of
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zero particle velocity and acoustic temperature at the tube wall. Then, for the case of wide tubes
and long wavelengths compared with the thickness of the boundary layers, he calculated the
attenuation factor and speed of propagation from the real and imaginary pans of the propagation
constant respectively, which are solutions of the dispersion equation, making approximations to
the lowest orders possible.

Lord Rayleigh has included a detailed account of this theory in his book “Theory of Sound"l l7].
which is a “vademecum” in every acoustical research laboratory. This paper would not be complete
without reference to Rayleigh (but it is not superfluous as we will see below). Nobel prize winner
in physics in 1904. Lord Rayleigh (baron J.W.Strurt), was born on 12th November 1842 and died
on 301hjune I919. He published papers. reports on experimental and theoretical work on optical
and acoustical radiation. electromagnetismgeneral mechanical theorems, vibrations of elastic
media, capillarity and thermodynamics. An illustration of Rayleigh‘s uncanny ability to forecast
developments in physics is provided by his paper (1899)"0n the cooling of air by radiation and
conduction and on the propagation of sound”. in this he addressed the problem of the anomalously
high sound attenuation observed in air (much greater than that predicted by the transport properties
of viscosity and heat conduction). He predicted that the solution to the difficulty might be found in
a relaxation mechanism involving reciprocal transfer of energy between translational and internal
energy-states of the molecules of the gas through which the sound passes. This suggestion was
adopted by various subsequent investigators and led to the establishment of the vigorous field of
molecular acoustics, which by the second half of the twentieth century had thrown new and
important light not only on ultrasonic propagation but also on the structure and interaction of
molecules [18].

Thus at the end of the last century, the basic equations and ideas were available to interprete the so-
called classical loss mechanisms (that is those due to the viscous and thermal conduction effects),
and understand the molecular relaxation mechanism. A complete calculation of sound absorption
would necessarily include not only the contribution of each mechanism singly but also their
interaction. Fortunately. for frequencies below 10 MHz. absorption due to classical losses and
molecular relaxation are additive in gases. For a long time this result was assumed but it has been
demonstrated recently (I972) [19] by making successive approximations to a solution to the
Boltzmann equations. In addition, as we will see later, in waveguides or cavities such as we are
concerned with here, most of the power loss occurs within the thin boundary layers, through
viscosity and thermal conductivity. Then, under normal conditions, molecular relaxation can be
neglected in the dissipation process [20] . Nevertheless, as we will see in the basic equations
(section 2.3). the molecular relaxation effects may be taken into account by simply assuming that
the heat coefficient at constant pressure is a complex number depending on the relaxation time.
without changing anything in the formal solution of the problem. Therefore, as the main thrust of
this paper deals with the acoustic propagation in small bounded spaces. it appears that we are
concerned only with research devoted to viscous and heat conductive dissipation processes. The
work of Kirchhoff on acoustic propagation appears to be a starting point for much of the
SUbsequent research bearing on acoustic fields in bounded visco»thermal media,

2.2 Studies on acoustic propanation in visco-thermal fluid in the twentieth centug, pnti the
eighties.
Half of the twentieth century was to pass before any pertinent inVestigation provided us with a
model sufficiently adequate for solving most of the problems of interest such as the propagation of
all kind of modes, both propagating and evanescent, in waveguides. It is in fact only eighty years
after the publication of the major paper by Kirchhoff. that Lothar Cremcr (1905-1990) published
an article entitled "On the acoustic boundary layer outside a rigid wall" [21] showing that, for the
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reflection of a harmonic plane-wave on an infinite rigid plane wall. the acoustic behaviour of the

medium. in the neighbourhood of the boundary but outside the boundary layer. is adequately

described by a simple propagational acoustic mode.and that most of pewer losses occur through

viscosity and thermal conductivity within the boundary layer. As a consequence. assuming the

temperature fluctuations and the particle velocity to be nearly equal to zero at the boundaries. the

properties of plane-wave reflection on a plane surface are described by the ratio of the normal

component of the acoustic panicle velocity to the acoustic pressure at the boundary, called the

"apparent specific admittance". detemiined by the shear viscosity and the coefficient of lhen-nal

conduction, and the ratio of the acoustic waveriumber to its component normal to the plane of the

wall (that is, on the angle of incidence for a propagating mode). This is an innovative result as is

demonstrated underneath (section 2.3.1). equation 25) which has significant consequences. We

would like to mention briefly here that Cremer was also innovative in other fields in‘acoustics such

as building acoustics.where his attention ranged from structure-borne sound. including impact

noise insulation, sound attenuation in ducts, the transmission loss of simple and double walls and

cylindrical shells. the theory of floating floors and the effects of sound bridges in building

structures. In concert halls acoustics, he has been responsible for the design of a number of well-

known halls, including the Berlin Philharmonic, the Opera House in‘Munich and the Liederhalle in

Stuttgan As for musical acoustics, he has studied the behaviour of organ pipes and violins.

Finally he has contributed to the theory of electromechanical transducers and to the field of

psychological acoustics.

Coming back to the Cremer's equivalent boundary layer admittance, the first subsequent

development was produced by Beany tvvo years later [22]. Making use of Cremer‘s result, he

extended the classical Kirchhoff approximate result for the attenuation of harmonic plane waves in

rigid walled tubes to the case of higher order propagating modes. but the theory is not valid near

the adiabatic cutoff frequency and for evanescent modes. Developments of this work giving

solutions. that is giving the approximate value of the propagation constant. at the cutoff frequency

and for evanescent modes, have beenmade recently 0985-1988) [73 to 26] . As an example of

these results. figure 1 shows the ratio of the actual attenuation coefficient a of the (m.n) modes to

the attenuation coefficient of the plane wave mode (Kirchhoff) versus frequency parameter (ratio

of the frequency to the adiabatic cutoff frequency), for a circular tube 0.2m in diameter.

200

    
  

0 0
091 rot 099a 1002

Fig. l : Attenuation ratio of (m.n) modes versus frequency parameter
for circular tube.
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Another extension of the Kirchhoff theory to spherical shells published by M R Moldovcrdt al. in1986 [7] leads to an equation which determines the approximate complex resonance frequencies ofthe gas in the shell, which has application for measuring the speed of sound in gases with highprecrsron.

All of these results (and there are others). have been derived directly from the Kirchhoff OrlandCremer results mentioned above. In addition. the work carried out on the acoustic gyrometer [9](that we will introduce under) largely makes use of the Kirchhoff and Cremer results.

However. recent works on the acoustics of very thin fluid layers or miniaturized fluid—filledcavities [271‘ and the need for accurate models of the acoustic field in ever smaller fluid-filledcavities has focused our attention towards solutions of the basic equations that were not available(or not enough accurate) until now. The next subsection is devoted to this subject.

.3 dva s ofthe la tte ears on t e acoustica be aviour of 'ssi ative unded media.
a-The basic guations
A viscothemral fluid oscillating around some steady state can be described by a set of thermostaticparameters and a set of thermodynamical variables. The thermostatic parameters are the ambiantvalues P of the pressure, T of the temperature, and p of the density. The thermodynamicalvariables are the pressure variation p. the particle velocity v. the variable part of the density p', the
entropy variation s per unit mass and the temperature variation 1: . The nature of the fluid is then Iaccounted for by phenomenological quantities : the shear viscosity u. the bulk viscosity n, thecoefficient of thermal conductivity A. the heat coefficients at constant pressure and constant
volume per unit of mass CP and CV . their ratio y . the increase in pressure per unit increase in
temperature at constant density [5. and the fractional decrease in volume per unit increase in
pressure at constant temperature x—r . Three types of source can set the fluid into oscillation :
external forces per unit of mass F, mass sources described by a rate of creation offluid g per unitof mass, and heat sources described by a rate of heat creation per unit of mass r .

The following constitute a complete set of linear equations [I l,l2.13,28] :

-The Navier-Stokcs equation:
patv + grad p - (n+4u/3) grad(div v) + u cur-l curl v = pF , (l)

-The conservation of mass equation:
dtp' + div(pv) = pq . (2)

-The conservation of energy. which reduces to:
pTals - div (A grad T): pr (3)

in addition, the thermodynamical state laws of the fluid allow us to express all thermodynamicalquantities with only two independent variables, leading. for example, to the following state laws :
S=(Cp/T)t- (Pliny/9w . (4)
p’ = m (P - PM a (5)

The molecular relaxation effect may be taken into account here by the simple assumption that the
heat coefficient at constant pressure CP in equation (4) is a complex number C; depending on the
relaxation time 9 ; for usual bi-alomic gases c; is given by :

Proc.l.0.A. Vol 15 Part 3 (1993) 5



 

Proceedings of the Institute or Acoustics

ACOUSTICS OF FLUID—FILLED SMALL CAVITIES

s:Cp =cp.cv<")ea!/(t+eal) . (6)

where CV“) is the contribution of the vibration of the molecules to the heat coefficient at constant

volume, and where the operator (1+ 8 t3l )'1 formally means

Hie—uefdl. ewe _ (7)

But in waveguides or cavities such as those which are our concern here, most of the power loss

occurs within the boundary layers, through viscosity and thermal conductivity, and thus the

moleculanelaxation effect can be neglected in the dissipation process( Cptsz ) .

Under the usual gauge conditions, the particle velocity v of any disturbances governed by this

system of linear equations can be considered as a superposition of a rotational velocity vv (due to

viscosity effects) and a solenoi'dal velocity v], due to acoustic (Va) and heat conduction (vh)

effects :
v=vl+vv , "[="a+Vh . (3)

Consequently, equation (I) can be split into two equations in such a way that combining equations

(1) to (3) along with the relations (4) and (5) yields. outside the sources:

act 1- (Pc/ifi) div V1= 5" act P . (9)
(3st-lhA)t=i(Y-1)/(l’fl)iactp , (10)

(act-IVA)v1=-(pc)‘lgradp , (l1)

(act-I'VA)VV=0, (12)
div vv = o _ . (13)

curl v1: 0 , (l4)

where the characteristic lengths IV , l’v and [h are defined as follows, with c being the speed of

sound :
Iv = (n+4p/3)/(pc) , I", = u/(pc) , Ih = N(chp) . (15)

it is convenient. for calculating the acoustical propagationt to find the homogeneous wave equation

for p, t and v, (which of course is essentially redundant given the equations 9 to 12). One can

demonstrate [2930] that these quantities satisfy the same propagation equation. For example. the

temperature 1 can be written as the sum of an acoustic temperature ta and an entropic temperature

1h which are respective solutions of the homogeneous equations :

Kan):- (l‘+R) A] ta = 0 , item)? - (F-R) A] q, = o . (16.a-b)

where 21‘ = I + (lV + ylh) 6c! .

2R = {1+2llv-(2-y)lh] acl + (Iv-ylh)2 tad)1 l": a
Note that equation (16.b) is a diffusion equation because the Taylor expansion of the function (1‘-

R) shows that the operator 6c! can be factorised : rh is associated with the heat transfer due to

thermal conduction.
In the frequency domain (acl =ik), equations (l6.a-b) give the following:

(A+kaz)ra=0 _ (A+kh2)th=0. (17.34:)

where k3: = k3(i+iklvh-k31'vhlh)-l , (l7.c)
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khz = -ik[Ih( l-ikl’vhn'l . (l7.d)
with [vb = 1V + (y-l)lh _ 1’", = (y-l)(lh-lv) .
Note that equation (12) gives, in the frequency domain :

(A+kv2)vva0, (18)
where k‘,2 = -ikll'v .
and that equations (17) and (18) provide us with the exact values of the three wavenumbers k3, kh
and kv , associated respectively with the acoustic movement, the entropic movement due to heat
conduction and the vorticity movement due to viscosity effects (these results did not become
available until 1989 [28]) .
From equations (9) to ( 12) it is easy to obtain espressions for the pressure variation p and the
laminar velocity v, as functions of the temperature 1: = 15a + 1h (Ia and 1:]! being solutions of
equations l7.a-b) ; in the f uency domain these results can be written as fol10ws:

p = lvfl/(r-l) (Ehata + Ehhth) . (l9)
v1= (i/pw) [VB/(74)] ( Ca grad ta + C]. grad t}, ) . (20)

with gm, =1—ill‘kV3/k and g, = g},ng ,
where the subscript “[1” stands for “h” or “v” and where the subscript “v” stands for “a” or “h”,
where the subscripts “a.h.v” correspond to the three kinds of mode (acoustic, entropic and
vorticity modes) .

b—Boundag cgggjtionsl applications |30|.
In most applications, the thermal conductivity and the specific heat per unit volume of the wall
material greatly exceed the corresponding quantities for the gas. Then. neglecting heat-transfer
parallel to the wall on account of the fact that the temperature varies slowly in that direction and
neglecting the very slight temperature jump at the wall [31]. the continuity of the normal heat flux
at the interface is practically equivalent to the requirement that the total temperature 1: be constant at
the wall, i.e. :

ta +th=0 on thewalls. (21)
In addition, for a perfectly rigid w'all, neglecting the very slight velocity slip at the interface [31),
we assume henceforth that the total particle velocity v is equal to zero at the boundaries :

v“ + vhu + vvu = 0 on the walls . (22)
yaw + vhw + vvw = 0 on the walls . (73)

where equation (22) represents the component of the velocity normal to the wall and equation (13)
the components parallel to the wall (the sum of the acoustic velocity Va and the entropic velocity
vh is the laminar velocity v,~ introduced at equation (8)) .

Expressing each quantity as the product of a function of “u” (coordinate normal to the wall) and a
function of w (coordinates in the plane tangent to the wall), substituting the result (20) into
equation (22) and (23), and taking into account that the boundary conditions must be satisfied for
arbitrary values of w all over the boundary surfaces, equations (21) to (73) yield anew general
dispersion equation (see (30]) :

nth/mum =vo-1Iwurama-wuvivvhl - (24)
where each function now represent the only function of “u” mentioned above (for the value of "u"
on the wall). and where the subscript “w” stands for any component of the vector “W” (Va is the

PM.I.O.A. Vol 15 Part a (1m) 7  



 

Proceedings of the Institute of Acoustics

ACOUSTICS OF FLUID-FILLED SMALL CAVlTlES

modulus of the outward normal vector to the boundary surface) .
Various applications of these results (especially equation 24) are presented below, for canesian.
cylindrical and spherical coordinates.

For the case of cartesian coordinates, let a semi-infinite medium bounded by an infinite, plane.
rigid wall be set at x=0 (the x-axis being inward directly). As a consequence of equation (24), the
effects of the thermal and shear modes on the boundary conditions can be treated by using the
concept of the specific admittance Y3 = pc Vla/pa at the boundary :

Y3 = Gk)“3 (11— «uncanny/1 + w—uuh)“2 l . (E)
This result was first given by L. Cremer in 1948 (see section 2.2 above). from a specific
calculation in cartesian coordinates.

For the case of cylindrical coordinates. equation (24) provides the “exact” equation which gives
the complex axial wavenumbers for all kinds of modes (propagating or evanescent) in infinite
cylindrical waveguides (such aresult was not available until we obtained it in 1988 [30]). This
equation can be written as follows:

(1-Ch/C3ka2/xfiiimlemmh-[(kaz)2/kV:le(")l=Bm(a)-(Ch/§a)Bm(h) .(26)
with 3mm) = xuk J’mOLPR) / Jm(qu) ,
where Jm is the mth order cylindrical Bessel function, R being the radius of the tube,

x” =ik,.2-(kaz)21“2
This exact equation has been fled in l988 [25] to generalize the expression for the axial
wavenumber obtained in 1949 I32].

For the case of spherical coordinates. we can treat the example of a perfectly rigid spherical shell
(the origin of the coordinates being at the centre), and using the solutions which involve the nth
spherical Bessel functions jn . equation (24) can now be expressed as :

(nah/ca) n(n+1) I owns”) = hm“) - (ch/ca) hm“) . (27)
with bmiili = [kuRj‘n(k”R)] ljn(k“R) , R being the radius of the sphere .

This result was first given in the literature in [988 [7], from a direct calculation in spherical
coordinates. This “exact” equation can be used to delennine the wavenumber kg and. from it. the

resonance frequencies of the fluid enclosed in the sphere.

3. RECENT APPLICATIONS : MODAL ACOUSTIC FIELD STRUCTURES .
CORIOLIS COUPLING .

3.l introduction.
The set ofequations that are presented in the preceeding section allows us to solve several practical
problems associated with useful applications using guides or cavities. We intend here to focus on
applications making use offluid-filled cavities, which need a good understanding of the spatial
structure of acoustic fields (mode coupling. effect of local and non local sources, and so on), and
which need accurate results for resonant frequencies. quality factor, Coriolis effect. etc...

The first application that we would like to mention briefly here involves the thermophysical
properties of gases. especially at low temperature and high pressure, wich are deterrninated merely
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by measuring the acoustic resonance frequencies of a spherical resonator 12cm in diameter
(deviation from sphericity being less than 10pm) [7.81. The temperature is controlled to an
accuracy of the order of 0.001 K (although the precision with which the temperature can be
expressed has an accuracy of the order of 0.0! K). and the resonator is operating in the frequency
range 1 to 40 kHz. The high quality factors (typically 1.000 to l0.000 ) allow a precise
measurement of the resonance frequencies. making use of adetailed model for the resonance
curves. The ratio of the speed of sound in a gas of interest and the radius of the spherical resonator
is then measured with an accuracy of the order of magnitude 10'5 (in the RT range I to 200 bars.
200 to 320 K ), which then enables us to obtain values for the thennophysical properties
mentioned above.

This brief summary on the spherical resonator as a tool for obtaining precise values of the speed of
sound isjust given here as a very significant example of the use ofthe sound to measure physical
properties of gases. Other examples can be found in the literature as well as other kinds of
applications. We restrict ourselves here to applications which need a good modelling of the
acoustic field in cavities. So. in this section (3), we intend to give a brief review of relevant
studies, emphasizing mode coupling due to the Coriolis effect as an interesting example and a
useful phenomenon which can be used to design new types of rate gyro. Other examples bearing
on the use of thin fluid films for the damping of vibrations and the optimization of transducers are
presented in section (4) .

3.2 Mode coupling in cavities ' the acoustic rate gyro.
a-The problem. .
The aim of this subsection is to present a systematic way for calculating mode couplings inside
fluid-filled cavities. taking into account the necessarily imperfect wall of the cavities (loudspeakers
and microphones at the surface of the walls. shape imperfections. etc.) and the inertial effects due
to a rotation of the cavity. Only simple shaped cavities (rectangular. cylindrical or spherical) are
considered. in order to obtain accurate solutions. Coriolis coupling and other inertial effects are
considered as a volume source and we will show that this leads to coupling coefficients which are
found to act very similarly to the "geometrical" terms (or other terms linked to the boundary layer
effects).For this reason. the differences and similarities between the two kinds of coupling will be
discussed together. so as to permit the transposition of any result from one coupling to the other.

As was emphasized in sub-section 2.3 . for cavities whose dimensions are greater than the viscous
and thermal boundary layer thicknesses. that is which are greater than about 10 micrometers , the
acoustic movement predominates almost everywhere (outside the boundary layers). and
consequently the acoustic behaviour can be considered as a simple propagational acoustic mode in
a dissipative gas (or perfect gas if very accurate results are not needed). which therefore must
satisfy the Helmholtz equation (l7-a). where the acoustic wavenumber Ita is given by equation

(l7—c). This leads, for the acoustic pressure pa . when the field is generated by an external force
F. (to a first approximation) to:

(A + k3: ) pa = p divF . in the whole volume (D) . (28)

Because of the conditions at the interface. the three modes (acoustic mode. entropic mode and
vorticity mode) interact strongly inside the boundary layers : entropic and vorticity modes are
generated by the reaction of the wall in the presence of the acoustic field. giving rise in turn toa
small velocity component for the acoustic field on the boundaries. The acoustic part of this reaction
may be described by the admittance-like boundary condition Ya for the acoustic movement given in
section 2.3-b (equation 25). In addition. any real cavity will not provide only this kind of

Proc.l.0A.Vol15 Part a (1993) 9

 



 

Proceedings of the Institute of Acoustics

ACOUSTICS OF FLUID-FILLED SMALL CAVITIES

boundary condition : the necessary sources and microphones together with the shape imperfections
(compared with the corresponding perfect shaped cavity which allows us to solve the problem
with a separable coordinate system),and so on. act as perturbations of the acoustic field. All these
effects are accounted for by the boundary conditions for the acoustic movement as follows:

(6n + ikc ) pa = 0 . on the perfect shaped walls (6D) . (29)

where an is the normal outwardly directed component of the spatial derivative on the walls.
Note that for a perfect cavity. the boundary (6D) is “nothing other than" the real wall and "e" is
the admittancevlike boundary condition Ya . In this “non realistic" case, the boundary condition

would beas follows :
(6n + iltYa ) pa = O , on the walls . (30)

Because Ya depends on the direction of the acoustic velocity on the walls, this admittance-like
expression must be used carefully.

The solution for the problem can be expressed using the classical integral equation
pan) =13.) G(r,r') p divF dr’ +3313 [G(r.r‘) outpa(r‘)+pa(r')6nthr.r')] dr‘ .

where the Green function G(r,r‘) is assumed to obey the same boundary condition (30) as the
perfect walled tube. The Green’s function and the acoustic pressure inside the cavity may then be
calculated using an eigenfunction expansion. The orthonormal eigenfunctions wN chosen are the
solutions of the homogeneous problem :

(A+kxz)wx=0 . inthevolume(D) , (31)
(6n+ iltYa ) 1px - 0 . on the perfect shaped walls (6D) .

As the admittance Ya , the same as in equation (30), is very small, the solutions for 1px are
calculated using a first-order expansion with respect to Ya . The resulting functions are roughly
equivalent to those satisfying the Neumann boundary conditions (ie the eigenvalue problem is
nearly self-adjoint). But the eigenfunctions and the eigenvalues are both complex, avoiding by that
means any pole in the coefficients of the expansions [33].Substituting the expressions of the
boundary conditions for the acoustic pressure (equation 29) and for the Green‘s function G(r.r‘)
(i.e, equation 30), along with the eigenfunction expansions for the Green's function. and the
eigenfunction expansion for the pressure variation.i.e.:

par) = 2 AN wr) (32)
into the integral equation. leads to the set of algebraic equations [3435]:

[(D)+(a)](A)+(S)=0 (33)
where (A) is the unknown matrix column of A55

(S) is the matrix column which represents the energy transfer between sources

and eigenmodes, the Nth term being given by SN=flDtpN p divF dr , (34)

(D) is the diagonal matrix ofthe terms (k3? - kaz) which especially emphasize

the resonances,
(a) is the non diagonal matrix defined by its elements ugh-amp“ ik(c-Ya) tpM dr

which introduces the mode coupling due to the perturbations mentioned above.

in this formulation. a slight displacement fix of an element of the wall from its “perfect shape" can
be expressed as an equivalent admittance shift for the boundary conditions at the initial location,
This admittance shift is locally expressed as:

(e - a) 8 i tan(kbx) 8 ikbx .
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Moreover, ‘this admittance approximation can be used for negative perturbations as well asfor
positive ones. meaning that slight shape extentions beyond an ideal shape may be calculated using
the initial or an “average” perfect geometry, and this then permits optimizing the convergence of
the perturbation method. The (a) matrix is then symmetric (it should be emphasized that this is the
case only for small perturbations).

b—lnertial mode coupling 34é§ .
As far as the linear approximation is valid, the Coriolis effect is the only inertial effect to be
considered, because the other inertial terms have no acoustic effect. The Coriolis term

9 dich

in the right hand side of equation (ZS-a) can be successively written as follow;
[.1 div(29Av) = 29[v.curlQ—Q.curlv] = -2pQ.cur]v ,

where Q is the vector rate of rotation of the cavity with respect to an inertial frame, and where v is
the total particle velocity of the fluid perturbation inside the cavity. As it is the sum of a laminar
velocity v, (corresponding to the acoustic and the entropic movement) and of a vorticity velocity
vV due to the viscous effect (see equation 8), the last result reduces to :

9 dich = -2pfl.curlvv (35)

which involves only the vorticity particle velocity vv .

Therefore, the only inertial effects acting upon the acoustic field inside a cavity are the effects of
the Coriolis acceleration upon the vorticity component of the field, which is important only inside
the boundary layers near the walls (see sub—sections 2.3 and 3.2). ln addition, the outgoing (from
the wall) solution for the vorticity velocity vv of the diffusion equations(12) and condition (14) in

canesian coordinates (which canbe used even if the walls are not plane. so long as the curvature is
sufficiently small) permits us to obtain an explicit expression for the Coriolis source term. finally.
the Coriolis effect can be accounted for in the non-diagonal matrix (a) in the following manner :

uMN = 2(itu)" 1160 o“ Q.(nAgrad]-w~) dr . ' (36)

where gradTdenotes the components of the operator grad in the tangent plane to the wall and u
a coordinate along the normal to the wall, outwardly directed. its origin being on the wall.

This results shows that the Coriolis effects on the acoustic field leads to coupling between modes
(as do the other perturbing effects mentioned above in section 3.2-a). If we consider that the
changes in the field structure perturb the source term itself (the loudspeaker) only in a negligible
way, this coupling can be interpreted as energy transfer between modes. This is supported by
figure 2, which shows theoretical (full line) and experimentally measured variations of the
amplitude of the mode generated by a loudspeaker when increasing the rotation rate of the cavity,
illustrating the energy transfer from that mode to the others. The agreement is quite good, showing
futhermore that the experimental setup used,a modal antenna. was able to measure accurately
variations less than ] dBSPL (the acoustic level in the cavity was aboutllO dBSPL).

Figure 3 shows a schematic representation of the matrix (a) when the eight first modes are taken
into account : the non nul elements are represented by a letter which qualify the origin of the
coupling effects involved (given in the figure caption).
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Fig. 2 : Variations of the amplitude of the excited mode when the rotation
coupling increases (reference: level without rotation).

Solid curve: theoretical values (using actual quality factor);
0: measured values for (2 >0 ; measured values for S2 <0 .

 

Fig. 3 : Elements non equal to zero in the coupling matrix (a):
l ldeal cavity (without any perturbation) ,
D Dissipative terms (viscous and heat conducting effects) .
S Source effect when the loudspeaker is not well “centred” ,
C Coriolis effects , -
M Microphone position -i.e. when it is at a wrong place .
G Geometrical faults ,

Most of these coupling always exist . All of them are generally symmetric. except the Coriolis
effect which is always antisymetric (this last property can be very useful in practice) [36].

Figure 4 sh0ws the ratio of the amplitude of the main mode created by the con'olis effect to the
amplitude ofthe main primary mode created by the loudspeaker (which is an accurate picture of the
sensitivity of the acoustic tale gyro), in a cavity designed to strengthen these two modes : the solid
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line is the theoretical result. and the small circles are experimental values. The coupling remains
linear even for large magnitudes ( coupling ratio above 0.4).

AzlA‘
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Fig 4 : Coupling created by the rotation of the cavity around the z-axis .
Solid curve: theoretical values (using actual quality factor);

0 : measured values.

This illustrates the fact that the ac“ terms may be used for large perturbations, as they do not
correspond to any small-amplitude approximation. In addition, the theoretical and experimental
results clearly reveal that rate gyros based on acoustic mode coupling in cavities can reach a
sensitivity better than 0.01 0/5 (the angular velocity of the minute hand of a watch is ten times
faster).

The advantages of an acoustic rate gyro over the rapidly spinning wheel gyro (for example) would
be a lower power consumption. a higher reliability and long lifetime, as well as a lower
manufacturing cost and a lower temperature sensitivity. And as far as the microphones and the
loudspeakers can be miniaturized. this kind of gyro is capable of being made very small. The
present silicon technology permits us to reach an “ultra-miniaturization". opening new fields : on
the one hand inviting the design of reciprocal miniaturized transducers (loudspeakers and
microphones). and on the other hand attracting us towards modelling the acoustic fields in cavities
whose dimensions have the same order of magnitude as boundary layer thicknesses. excited by
non localized sources. This work is now in progress and already is motivating research for the _
future. The main purpose of the next section is to present the theoretical aspects of these problems,
showing first theapproximations currently in use for non miniaturiZed devices. which do not
remain valid for miniaturized u-ansducers (when good results are expected). and then showing the
way to how we may obtain an improved analytical solution and accurate models for
ultraminiaturized transducers.

4. WORK CURRENTLY lN PROGRESS ON MINIATURE CAVlTlES.

4,! Background.
ln recent years, the growing demand for miniaturized-transducers and the widespread use of
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silicon technology. has attracted attention to the design of condenser and electret microphones on
silicon chips [see for example ref. 37] . As the primary purpose generally seems to be for mass—
produced, low-cost microphones, where high precision is not needed. the theoretical models used
are those existing for conventional microphones [4.5.38]. and the major concern has been-simply
to solve the technological problems associated with etching the silicon. However. similar models
are also used to describe the dissipative properties of fluid layers in a variety of applications, such
as the damping in porous acoustic materials [39.40.4l]. the damping of vibrations in rotor-bearing
systems and attenuation of flexural vibrations of panels in machinery enclosures [see for example
42.43]. and overall. the need for accurate models of the acoustic fields in very small cavities or
guides is becoming very important.

The significant parameter of these systems, when considering the geometry, the shape. and so on.
is the thickness of the fluid layer between the vibrating membrane and the backing electrode (in the
case of microphones or loudspeakers) or between the two vibrating plates (in the other
applications). compared with the thickness of the viscous and thermal boundary layers. The
situations we are concerned with involve a thin layer of fluid between the two surfaces where
"thin" may have several meanings : - the thickness of the fluid layer is very much less than its
others dimensions. - it is much smaller than the wavelength of sound in the fluid at the frequencies
of interest. - it is smaller than. or has the same order of magnitude as, the viscous and thermal
boundary layers (which under normal conditions are between l0 and 100 micrometers for the
frequencies of interest). However. the thickness remains much greater than the mean free path
(which in air at atmospheric pressure is about 0.1 micrometer). so we are able to define a fluid
"particle" which is small compared with the thickness of the flUid layer but large compared with
the mean free path (and thus we ensure that the continuum hypothesis remains valid).

There will he a need in the near future for improved theoretical models for calculating the
behaviour of the membranes or plates in such devices. as the models now available are not valid
for fluid layer thicknesses less than about l0 micrometers (if good results are required).
Specifically. we will need accurate models for miniaturized. simple-shaped condenser or electret
microphones and loudspeakers on silicon chips. having smooth electrodes (no holes or grooves
whose influences would overshadow many other effects). where the fluid layer is surrounded by a
reservoir (with a capillary tube to equalize the static pressure). These transducers may have nor-r
conventional properties (for example limited to a narrow frequency range at high frequencies). as
Lhcy may be used in very small cavities (which are also etched on a silicon chip for example).

As it seems that most ofthe assumptions and hypotheses assumed in the models in use until now
can be avoided without being left with a problem which can only be solvednumerically, we can
have improved simple models which will be helpful for the study and design of miniaturized
transducers. In the following sub-section (4.2). we will discuss briefly the conventional models
and the approximations they involve. and in sub—section (4.3) we will give anindication of future
developments. In both cases we will be interested in the response ofa membrane clamped at its
periphery, taking into account the effects of the fluid-film trapped between the membrane and a
smooth rigid backing electrode at rest, and surrouded by a reservoir at its periphery, as it is an
important example.

4.2The conventional modelsgsce for example, I to SI 38 and [42 to [46“.
The foundation of the conventional derivation is the assumption that the flow is laminar. tangential
to the walls (which are assumed to lie in the w-plane. that is for example the xy.p|ane J. with a 1-
component (Le. normal to the membrane and the backing electrode) of the flow assumed to be
zero. Moreover. it assumes that the pressure variation is uniform through the thickness ofthe fluid
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film. It includes viscous losses in the shear. oscillating. laminar flow produced as fluid is pumped
forth and back by the vibrations of the membrane. but since the velocity profile is not greatly
dependent on the inplane coordinates w and, since it has a strong shear across the layer for any
value of the coordinates (which is valid only for films of infinite extent), terms containing spatial
variations of velocities in the tangential directions are neglected compared with terms containing
spatial variations in directions normal to the walls. that is | gradw l “ ld/az I when applied to the
total particle velocity v = vw ; this assumption implies that the bulk vicosity is neglected and that
the vorticity is not involved so far (even if the shape contains sharp edges). Sometimes the theory
is extended to cover thermal effects due to heat conduction within the fluid and between the fluid
and adjacent surfaces [27,42]: in this case, the temperature, and hence the density, may vary
across the fluid gap but. as the associated laminar entropic velocity is not introduced. the thermal
effects lead only to a polytropic law, instead of an isothermal (or an adiabatic) one, to describe the
compressibility of the fluid. Moreover, all quantities which depends on the coordinate 2, that is the
particle velocity v=vw , the temperature variation t and the density variation p’ . are replaced by
their mean value (denoted < >) across the thickness of the fluid. Therefore. assuming a harmonic
motion (aazik). equations (I) to (5) may be written as equations (37) to (39) :

[act — I'v(62)3] v = -(pc)“gmdwp , (37)
ho divw<v> 4- im‘; = —ituh0<p'>/p , (38.a)
<p‘> = (y/cz) (p-fiab) , (38.b)

[act - Inwzfl t =[(Y—1)/(flr)] amp . (39)
Where "In," is the thickness of the fluid gap between the "walls".
The left hand side of equation (SS-a). ho divw<v> + iwig , is the volume flux amplitude. E being
the amplitude of the relative displacement ofthe membrane, which is the non-local driving term for
the fluid motion. Note that the assumptions lead us to stipulate that the z-dependence for 1: gives a
z~dependence for p’ but not for p which is assumed z-independent (see equation 38-h): this cannot
be justified from the kinetic theory of fluids.

The associated boundary condition would be the same as those given in section 13-h (equations
2] to 23), except that several no longer apply as a consequence of the assumptions made. We do
not need to write anymore that the z-component vZ of the particle velocity is zero on the hacking
plate; in addition, the continuity equation vz=iw§ at the interface between the fluid and the
membrane cannot be used here. as V1 is assumed to be equal to zero throughout the fluid film.
Moreover, at any point located on the periphery of the fluid layer, either Dirichlet‘s condition or
infinite medium (that is Sommerfeld) conditions are assumed. depending on the system considered
(this last hypothesis greatly simplifies the solution of the problem)

in addition, the equations governing the forced vibrations of the membrane. clamped at the
periphery. driven by an incident han‘nonic acoustic wave pi assumed to be uniform over the
surface of the membrane can be written as follows :

T [ A + K2 ] 50v) = pi - p(w,h0) , for any value ofw , (40)
§(ws) = O at the periphery (w:ws) _

with K2 = kzczps/T . where T is the tension of the membrane. us the surface density and kc (=ui)
the angular frequency.
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It is easy to demonstrate (see, for example. [47] lo [49]) that the whole acoustic problem reduces
to a complex Helmholtz non homogeneous equation. depending only on the two tangential
coordinates w , as f0110ws:

(Aw+xz)P(W)=§E(W) . (41)
where x2=k2[y-(y-I)Bh]/(l-BV) . (42)

l; = — pkzc2 l h Bv . (43)
with Bh'v = [tan (kh‘v h/2)] / (khy h/2)

Note that this expression for the complex wavenumber x is similar to that obtained independently
by Zwicker and Koslen [32] and Daniels [50] for circular tubes (where the role of w and z are
interchanged), over a very wide range of frequencies and radii. which has been used and studied
extensively over the last forty years . Asymptotic expansions (with respect to the ratio of the radius
and the boundary layer thickness) have been presented [51] and conditions of validity obtained
both numerically 152] and analytically [53] (providing one of the basis of the theory of sound
absorbing materials [32.39.40,4l]). More general solutions. including both boundary layer and
volume dissipation. have been obtained analytically [20]and the corresponding solution in the
time domain (i.e. pulses in tubes) is given in reference [54].

Coming back to the problem concerning the response of a membrane clamped at its periphery,
taking into account the effects of the fluid-film trapped between the membrane and either a smooth
or perforated rigid backing electrode and a backing cavity. we must mention that attempts,
principally during the last three decades. to improve the classical model mentioned abov¢ have
been successful in describing the frequency response of electrostatic transducers accurately.
especially the l" condenser microphone. It can be considered that the earliest work in this direction
is that of DH. Robey [44], which shows how to treat fully the viscous effects taking into account
the rotational component of fluid velocity. when no grooves or holes are included on the backing
electrode. assuming that the input impedance of a surrounding reservoir is exactly equal to zero
and that the process is isothermal. writing the displacement of the membrane as an eigenfunction
expansion but considering only the average of this displacement amplitude over the surface of the
membrane... . One decade after. LG. Petritskaya [46]. making use of the results given by DH.
Robey. introduces the effect of the input impedance of a number of holes in the stationary
electrode. to study the behaviour of electrostatic microphones, trying in particular to optimize the
viscous damping. Therefore, LE. Warren et al. [45]. whilst making the hypothesis that the
pressure field and the density are uniform in the direction normal to the membrane across the fluid
layer, and assuming a laminar velocity and a Poiseuille flow between the electrodes, and an
isothermal process. make use of afinite difference method to obtain numerical solutions. and
shcw a number of useful results for optimising and characterizing properties of microphones.
Then. making use ofthe work of DH. Robey and LG. Petritskaya. and at the same time reducing
the theoretical complexity of the problem by means of asumptions compatible with the
characteristics of l" B&K microphones, AJ. Zuckerwar [38] expresses the sensitivity and
equivalent lumped elements. which gives results which are in excellent agreement with
experimental data taken on B&K 1" pressure microphones.

As most of the assumptions and hypotheses mentioned in this section do not remain valid for
enclosed fluid layer thicknesses approching ten micrometers. and because these approximations
can be avoided whilst still allowing an analytical solution. a new approach to solving the complete
“exact” set of equations (9) to (B) can be made as presented in the following sub-section.
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43 gonclusion : further deveIQEments.
First, in order to avoid the “main” difficulty that has been identified with the conventional models.
the z-component of the fluid velocity is no longer assumed to be zero. and then the continUity
equation for the normal velocity at the interface between the membrane and the fluid can be written
as usual, this normal velocity being the sum ofthe z—componant of the solenoi'dal particle velocity
and the vorticity particle velocity. This continuity equation must be used to describe the strong
coupling between the membrane and the fluid. In addition, it would be convenient to start with a
solution of equation (40) governing the vibrations of the membrane, clamped at its periphery. in
such a way that we will take advantage of the orthogonality properties of the solutions of the
associated Dirichlet eigenvalue problem.

Therefore, the general solution for the displacement of the membrane is a simple eigenfunction
expansion. and then. since the continuity equation for the normal velocity at the interface between
the membrane and the fluid must be verified for arbitrary values of the coordinates w over all the
boundary surface, the normal fluid velocity at this interface must be written as an expansion using
the same eigenfunctions as used for the membrane. Hence. this normal fluid Velocity. outside the
interface, for any value of: in the separation between the backing plate and the membrane. can be
written as the sum of this eigenfunction expansion and a function of w and 1 expressed as another
eigenfunction expansion where it would seem logical to assume that the eigenfunctions will be
solutions of the one dimensional Neumann problem in the z-direction.

Then. the propagation equations (17) must be used to obtain the general solution for the
coefficients of these expansions. Therefore, solving the complete set of basic equations (9) to
(l4). tacking into account the boundary conditions (Zl) to (23) and making use of the results
mentioned here above. will allow us to calculate the behaviour of the membrane (or plate).
avoiding the approximations currently in use which do not remain valid for miniaturized
transducers. in the frequency range of interest (up to l00 kHz). In the lower frequency range,
lumped element models can be obtained for a first approximation as the dimensions of the system
are much smaller than the acoustic wavelength. and in the higher frequency range more
complicated models would be provided as the vorticity and entropic phenomenon will play an
important role (which increases with the frequency). This work is now in progress [10]... We
would like to mention here that an extension of some part of the work mentioned in this paper. in
the time domain, using a heat source described by a rate of heat creation. is given in reference
l55l- v
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