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1. INTRODUCTION

Robust speech recognition remains an elusive goal lor speech technologists Interested In the engineering ol
devices which can function In hostile acoustic environments. Various techniques. ranging Irom spectral sub-
traction (e.g. Lockwood 8- Boudy. 1991) to parallel model combination (Gales 8 Young. 1993) have been pro-
posed to handle speech corrupted by noise (see Furul. 1992. tor a recent review). Some cl these approaches

have been very successful at Improving recognlser performance In the presence cl certain types of noise.

Kedirkarnanathan (1992) presents a wide-ranging study of the hidden Markov model (HMM) decomposition

technique. In which noisy speech ls explained by a combination ol HMMs for the speech and noise.

In spite at this progress. current approaches are dilllcult to generallse to the range at conditions In which lis-
teners lunctlon adequately. For example. 'noise‘ reduction algorithms generally assume stationary noise with

known spectral properties. HMM combination techniques assume that exactly two sources are present and
that models exist for noise sources as well as lor the speech. By contrast. listeners appear to process speech
In a robust lashlon without such aprior! constraints. In particular, when laced with an 'auditory scene', listen-

ers are generalty able to attend selectively to a single source.

Our recent work oncomputational auditory scene analysis (Cooke. 1993: Cooke a Brown. 1994; Brown a

Cooke, in press) has attempted to apply principles cl auditOry organisation, derived Irom decades at psycho-
accustlc research (Bregman, 1990; see Darwin 5 Canyon. in press. tor an extensive recent review) to the

problem of separating acoustic mixtures Into groups cl components which appear to derive from the same

source. Figure 1 illustrates the separation 01 speech tram a siren. As illustrated In this figure. the results at

 

\‘l’llrr. .
FIGURE 1. Lelt Audnory' time-treating representation clan ulleramc mixed with a siren. RI z
speech 'eiream' produced by a model ASA using the principle cl grouping by pitch contour eghnilarity.

sound source segregation may be tar Irom perlect— tor a variety of reasons. it may not be possible to recover

complete sources from a mixture. The lect that we hear complete utterances rather than disioint lragments.

for example. is partly an Illusion: it is well known (e.g. Warren. 1970; Warren e! at. 1994) that listeners can

perceptually induce missing inlormation under certain conditions which are guaranteed to hold in normal con-
ditions. We have exploited these principles ol perceptual continuity In our recent modellingwork (Cooke 8-
Brcwn. 1993) to obtain a certain degree ol restoration. However, we have not used any lnlormation about
speclllc sources such as speech. and there may be a limit to how much reconstruction can be achieved with-

out such source—specilic knowledge. -
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II we are to develop auditory scene analysis followed by speech recognition as a new paradigm for robust
ASH. It is necessary to address the question of how recognisers can be modified to handle fragmentary spet>
tro-temporal descriptions oi the sort illustrated In Iigure 1. There are two aspects to this question — the prob

Iem or training recognisers using Incomplete patterns. and the issue of using such devices to recognise such
'occluded" material. We have recently adapted the prevailing stod'iastic approach of continuous density hid-
den Markov models to tackle the latter Issue (Cooke. Green, Anderson 8. Aboertey. 1994; Cooke. Green a
Crawford, 1994). In this paper. we also deal with the problem at training a recogniser based on partial Inior-

mation.

A method for training a sellcrganislng Kchonen network (Kohonen. 1984) using Incomplete data has recently
been described by Samed a Harp (1992). This procedure is descrlbed In section 2. Section 3 demonstrates
the results ofapplying the modified training procedure to a network Which sell-organises spectral vectors with
missing components. Section 4 describes the task ol recognition from partial data. Finally. we show (In sec-
tion 5) how a constraint derived from auditory Induction can be used to produce yet more robust performance.

2. A MODIFIED TRAINING PROCEDURE FOFI SELF-ORGANISING KOHONEN NETS

Sellorganislng networks of the torm Introduced by Kohonen (1984) have the property 01 mapping similarities
In Input space to topological proximin In a suitably chosen output space — typically. a tvvo—dimensicnal grid.
Such networls are trained In an unsupervised manner and have tound application In many domains. Includ-
lng feature attraction for speech recognition (eg. Kangas. Torkkola A Kokkonen, 1992; Patterson. Anderson
a Allerhand. 1994).

The structure and operation oI the Kohonen net Is straightforward. The network consists at a two—dimensional
grid of cells. each of which has an associated weight vector Whose dimensionality matches that ol the Input
patterns. Initially weights are set to small random values. During training, Input vectors are presented to the
network In turn, each cell computing Its match to the Input vector. Typically. the match Is computed as the
Inner product of the Input vector and the cell's weight vector. or. alternatively. as the smallest Euclidean dis-
tance. The cell with the best match ls chosen as the winning node, and its weights. and those of its neigh-
bours. are modified to bring them closer to the Input patterns. The fact that updating takes place over a
neighbourhood Is the key to the spatial ordering property of Kohonen nets —— that similar Input patterns tend
to produce responses In neighbouring cells. Typically, weight updates are made in accordance with the lol-
lowing formula :

Awum =nmexpl- d’ o.c)/2a=(v)](xrtr)—w.;<r))

Here. wu is the weight between input component i and output unit 1. 40'. c) Is the distance (in the output
grid) between unit j and the winning unit c, and n and a are parameters whose values are decreased geo-
metrically during training. Progressiver smaller weight changes are made to nodes further away from the
winning cell.

For the use of Input vectors with missing values, Samad & Harp (1992) presented the following modified
training procedure. First. the winning node Is computed using the subspace ol available values. For example,
using the Euclidean metric. Instead or

"I =i("’v "'01
I-l

where n/ Is the distance between j‘s weight vector wJ and the input vector. x, and n is the dimensionality of

1. The development and notation used here is essentially that cI Semad A Harp. and is presenIed lor completeness.
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FIGURE 2, Upper. Input vector is compared with net weight vectors: the winning unit Is chosen as that
whose welghl vector most closely matches the Input vector.as determined by a distance metric.
Lower. Distance metrics used in various experimental conditions. See text tor details.

the vector we would compute:

m]: 2 (WI/"‘i):l
I a present

where pruenr is the set at Input units, i, for whlch values x, are available at time t. This is illustrated in the
table in figure 2. which also gives formula tor a Iurther distance metric used in experiments detailed later.

Having tound the winner. weight modifications are applied onlyto those elements of the weight vector corre-
sponding to Input values which are present:
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Aw“) = {ninepr-d’ U.c)/2d'(t)](x. -wu(i)) ifi E preunr
0 otherwise

In the experiments described In sections 3 and 4. we modified the public-domain SOM_PAK soitwere for Ko—

honen net simulation (Kohonan. Kangas a. Laaisonen. 1992) In accordance with the foregoing. to handle par-
tial debt.

3. LEARNING FROM PARTIAL DATA

A netoi dimensions 19x13 was used: recognition tests were per‘Iormed after the nets had been trained using

two epochs of 39000 and 195000 presentations and with learning rates of 0.01 and 0.05 respectively‘. The
Input representation was produced by e s4-channel gammatona interbank. with channel centre-frequencies
equally spaced on an EBB-rate scale between 200 and 5500 Hz. and the output oi each filter processed by

a model of inner hair cell transduction (Meddls. 1988). smoothed were 10 the window. Training and test data ‘

was generated from utterances produced by a single male Japanese speaker from the ATE large-scale

speech debabase (Kurematsu et el.. 1990?. A balanced set of 250 frames of each of the 27 labels was ran-

domly selected for use as testing data; from the remaining labels. 1000 were randomly selected as training
data (when there were insufficient Instances of a particular label. repetitions were made)“.

Recognition performance of nets trained with varying proportions oi data deleted irom the Input vectors ms

Investigated In a series of 10 different conditions. in which during irainlnginput vector components were de‘

Ieted at random with a probability which varied In from 0.0 (no deletion) to 0.9 (90% deletion). The trained

nets were calibrated (Le. one of 27 phone labels was attached to each output node) using the training set.

and their recognition performance measured In terms oi recognition accuracy —- simply thepercentage of

labels In the test set correctly identified. Results of these experiments are given In the left panel of figure 3.
which shows recognition accurate] as a function at deletion probability during training.

Performance is remarkably robust (albeit at a low baseline level) across all deletion conditions. Recognition
accuracy barely drops. even when 90% oi the frame is deleted at random. A useiul visualisation ofthe whole
trained not can be obtained by displaying the network mlghts In a spectrogram-like fashion, as shown in tig-

ure 4 which Illustrates the similarity betweennets trained using complete data vectors and those trained with
85% oi the components deleted at random‘.

4. RECOGNITION FROM PARTIAL DATA

A second series of experiments was conducted to determine the effect oI deletion of data during recognib‘an.
The procedure followed the same pattern as for the training experiments. but with a second dimension: during

the recognition process. components in the input vectors were randomly deleted with a probability of between

1. Pilot studies indicated that nets of size 17:11 and smaller were unable to adequately encode the label-set.

whereas Increasing net dimensions above 19113 gave diminishing Improvements in performance tor escalating

processing requirements. Similarly. increasing the length of training runs did not significantly improve perfor-
mance. whilst again lengthean the time required Ior training.

2. Experiments have also been conducted using data irom multiple speakers lrom the ‘nMIT database. and using
a PLP representation (l-len-nanslry, 1990) as input to the nets. with similar results.

1 in a series of pilot studies It was found that non-balanced training data gave worse results than for balanced

training (this might be expected. since the not than tended to be dominated by lrequently-occurring labels. oiten

to lhe exclusion oi less‘Irecuent ones). Funhennore. for this application. Increasing the size of the training set
did not appreciably Improve performance.

4. This corresponds to approximately the proportion oi deletions through simulated autfitcry scene analysis as de-
scribed later.
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FIGURE at Lei't Recognition eocuracy vs. probability at component deletion during training.
R Recognition secure vs‘ probabiii olcornponenl do tlon dirr rec nition, tor various
pr'godbfilbilittes of deletion «flirt. training (g'lrgen by the inset legend); seelntgnt Inorgdeteils oi ASA
con H00.

la! Iei' I'll 10/ M 181‘ [of fol iul

it   
FIGURE 1. Spectrogram-like plots of net weight more (1 trams = ‘I node) sorted by label (within-
lebel order n insignr loam] tor nets trained using (lent complete data vectors and ("'9’") date vectors
with 85% ot the components randomly deleted.

0 and 0.9. again In steps of 0.1 . This gave a total of 100 results tor each representation (10 deletion conditions
during training by 10 deletions conditions during recognition). which are selectively summarised In the night
panel of figure 3: again. recognition periormance is enoouragingty robust for nets trained in all conditions.

01 course. the distribution oi deletions as a result at auditory scene analysis will be anything but random. In
order to simulate the etlects at ASA-deletions. a 'mesll" was created which denoted positions of spectral

peaks in each Irame oI the test data. Spectral peak Inbrmelion was derived lrom Cooke's synchrony strand
(Cooke. 1993) represenhtion. which has been used asthe basis tor a model of auditory scene analysis

These peak positions were used to Indicate channels In the Input vector tor which data was “present” (and
corresponds to adeletion probability at around 85%). Using these 'oorrelaled' deletions improves recognition
accuracy, as can be seen from the 'ASA" point on the graph In figure 3.

5. EXPLOITING AN AUDITOFW CONTINin CONSTRAINT

As was noted earlier, under certain circumstances the auditory system induces missing intern-ration This      Proc.l.O.A. Vol 16 Part 5 (1994) 395
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phenomenon In referred to as auditory induction; related to speech II. is called the phoneme restoration afiect

(cl Bashtord l. Warren. 1967). A sound interrupted try noise bursts will. In the right conditions. be perceived
as continuing through the noise. One constrainton auditory Induction is that there has to be sufficient energy
in the missing regions to allow the missing segmenttc be interred; hence. there is reason to assume that the
recognition process Itself has access to something more like a complete auditory scene.

We can make use of this constraint in the recognition procedure by adding a component to the thetanoe met-
ric for any missing components whose maximum value (prurided by the tale! in the mixture) hlle below that

expected on the basis oi the components which are present. In outer words. the incomplete vectordefines a

pouble matching pattern, whose values (weights In the Kohonen net) represent a prediction of the expected
energy at that spectra! place. If there Is Insufficient energy in the mixture at that place. then there is certainly
insufficient in any source which make: up the mixture: this Is illustrated in figure 5.

'present‘ channels

(WU—x‘fsntall mu (0. wu-r,)2|l -  
Best match Incorrect match

FIGURES‘MIM houcuunmueimuxe'bestnuurp-mlehequmeotmbhbeMemu—
vector(“crawlerthmlwwnmwtdukwal-Thldismomhdetcmm

pr Mauro-www.ma‘mect panel mamatcnbehtreenlhelamelnout
vectorandunutweightunctorM'upecn'mmemyhmbpmuflinmeifinfl.

The Implementation at this constraint Is shown in the third row of the table In figure 2. Figure 6 presents the
results of adding this constraint to the recognition algorithm. and clearly shows a lurther flattening oi the rec-

ognition curve as the probability cl deletion increases. This demonstrates that even slmplernlnded applica-
tion of auditory induction (better estimates oi the missing components couid be obtained using greater

temporal context, tor instance) prove beneficial In this architecture.

5. DISCUSSION

The computational studies reported In this paper show that speech recognisers do not necessaer require
lniormatlon lrom all spectral regions In order to lunctlon adequately, More important Is the demonstration that
it is still possible to learn. despite missing elements. We regard these results as sufficiently encouraging to
pursue a new approach to robust ASH. based on an tnItiai stage at auditory scene analysis. followed from
recognition lrom partial data.

Of course. these studies are limited In extent and have presented a low baseline recognition performance.
well below that which it Is possible to achieve in more sophisticated recognition architectures. in other studies
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(reported In Coolie. Green. Anderson a. Abberiey. 1994). we show that It Is possible to modiiy the power sto-

chastlc iramework oi HMMs to handle Incomplete observation vectors. We have yet to demonstrate training

within the HMM approach. but believe both that aspect. and the use at an auditory induction constraint. can

be Incorpomted Into the Wterbi search.

A Iurther Ilmltatlon is the ladi of temporal context In the tralnlnyrecognltion process. In real listening situa-

tions. we would expect deletions to be correlated from Instant to Instant (due to correlations In both tore-

greund and background sources). It Is not obvious whether this will Improve or degrade results: however.

early results using the HMM approach — In which context does play a part— indicate that selective retention

oi spectral peaks produces enhanced performance.

The potential oi ASA as a basis for robust ASH ls clear —- the new approach makes no assumptions about

the number ol acouch sources present at any time. their prominence. or their spectre-temporal content. ASA

theretore holds the promise at providing a general answer to the problem ol speech recognition In a wide

range of unpredictable acoustic conditions, tree Irom the constraints afflicting most other proposed solutions.

What oi the Implications lor speech perception? This study provides the Iirst constructive demonstration of a

process which Infants might use to term auditory-phonological representations In normal listening conditions,

The process is based on an unconditional stage ol scene analysis. Iollowed by organisation ol the resulting

Iregmentary evidence. it Is unlikely that the details are anything like those In our model,but the simulations

presented here at least show one mechanism which can explain why infants need not be confined to an

enachoic chamber for the first tew months oi lile (unlike most ASFI devicesl).

It Is possible to speculate iurther. Suppose speech perception ls Iorcibly conditioned on the results of primitive

scene analysis. One possibility is that access to 'speech schemas' — stored representations oi speech

sounds— ls primarily via fragmentary descriptions. Further. top-down interaction could occur In a verificatory

mode. as suggested by the auditory Induction constraint (tor further elaboration at these ideas see Cooke.
Crawford 3. Green. 1994; also see Treunmilller, 1994).
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