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1. INTRODUCTION

Robust speech recognition remains an elusive goal for speech technologists interested in the engineering of
davices which can function in hostile acoustic envircnments. Varicus techniques, ranging from spectral sub-
traction {e.g. Lockwood & Boudy, 1991) to paraflel model combination {(Gales & Young, 1993) have been pro-
posad to handle speach corrupled by noise (see Furul, 1992, for a recent review). Soma of these approaches
have been vary successful at improving recogniser performance in the présence of certain types of noisa.
Kadirkamanathan (1992} presents a wide-ranging study of the hidden Markov model (HMM) decomposition
technique, in which noisy speech Is explained by a combination of HMMs for the speech and noise.

In spite of this progress, current approaches are difficult to generalise to the range of conditions in which lis-
tenars function adequately. For exampla, "noise™ reduction algorithms generally assume stationary noise with
known spectral properties. HMM combination techniques assume that exactly two sources are present and
that modals exist for noise sources as well as for the speech. By contrast, listeners appear to process speech
in a robust fashion without such e priori constraints. In particular, when faced with an 'auditory scene’, listen-
ars ara generally able to attend selectively to a single source.

Our recent work on computational auditory scene analysls (Cooke, 1993; Cooke & Brown, 1994; Brown &
Cooke, In press) has attempted to apply principles of auditory osganisation, derived from decades of psycho-
acoustic research (Bregman, 1990; see Darwin & Carlyon, in press, for an extensive recent review) to the
problam of separating acoustic mixtures into groups of components which appear to derive from the same
source. Figure 1 lustrates the separation of speech from a siren. As lllustrated In this figure, the results of

FIGURE 1. Lalt Auditory ﬂme-trsquef? represantation of an utierance mixed with a siren. A

speach 'stream’ producad by 8 model of ASA using the principle of grouping by pitch contour s?ralarlm

sound source segregation may be far from perfect - for a variety of reasons, it may not be possible to recover
complete sources from a mixture. The fact that we hear complete utterances rather than disjoint fragments,
for example, is partly an illusion: it is well known (a.g. Warzen, 1970; Warren ot al., 1994) that listeners can
perceptually induce missing information under certain conditions which are guaranteed to hold in normal con-
ditions. We have exploited these principles of perceptual continuity in our recent modalliing work (Cooke &
Brown, 1993) lo obtaln a certain degroe of restoration. However, we have not used any Information about
specific sources such as speech, and there may be a limit to how much reconstruction can be ach:eved with-
out such source-specific knowledge.
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i we are to develop auditory scene analysls followed by speech recognition as a new paradigm for robust
ASR, it Is necessary to address the question of how recognisers can be modified to handle fragmentary spec-
tro-temparal descriptions of the sort illustrated in figure 1. There are two aspects 1o this question — the prob-
lem of tralning recognisers using Incomplate patterns, and the issue of using such dovices to recognise such
"occluded” material. Wa have recently adapled the prevailing stochastic approach of cantinuous density hid-
den Markov models to tackle the latter issue (Cooke, Green, Anderson & Abberfey, 1994; Cooke, Green &
Crawford, 1994). In this paper, we also deal with the problem of tralning a recogniser based on partial infor-
mation,

A method for training a sall-organising Kohonen network (Kohonen, 1984} using Incomplete data has recently
been described by Samad & Harp (1992). This procedure Is described In section 2. Section 3 demonstrates
the results of applying the modified training procedure 1o a network which salf-organises spactral vectors with
missing companents. Seclion 4 dascribes the task of recognition from partial data. Finally, we show (In sec-
tion 5) how a constraint derived from audilory induction can be used to produce yet more robust parformance.

2. A MODIFIED TRAINING PROCEDURE FOR SELF-ORGANISING KOHONEN NETS

Sell organising networks of the form introduced by Kohonen (1984) have the property of mapping similaritias
in input space to topological preximity In a sultably chosen output space — typically, a two-dimensicnal grid.
Such networks are tralned In an unsupervised manner and have found application in many domains, includ-
ing feature extraction for speach recognition {8.g. Kangas, Torkkola & Kokkonen, 1992; Patterson, Andarson
& Allerhand, 1994),

The structure and operation of the Kohonen net is straightforward. The network consists of a two-dimenslonal
grid of cells, each of which has an associated weight vector whose dimansionality matches thal of the input
patterns. Initially weights are st to small random values. During training, input vectors are presented to the
network in turn, each cell computing its match to the input vector. Typically, the match is compuled as the
inner product of the Input vector and the cell's weight vector, or, alternatively, as the smallest Euclidean dis-
tance. The cell with the best malch is chosen as the winning node, and lts weights, and those of its neigh-
bours, are modified to bring them closer to the input patterns. The fact that updating takes place over a
neighbourhood Is the key to the spatial ordering property of Kohonen nets — that similar input palterns tend
to produce res?onses In neighbouring cells. Typically, weight updates are made In accordance with the fol-
lowing formula’:

Awy(r) = n{tlexp[- d* {j,c)/26* (1) ](xi (1) = wy (1))

Here, w, is the weight between input component i and output unit J, d{j, ¢} is the distance (in the cutput
grid) between unit j and the winning unit ¢, and v and ¢ are parameters whose values are decreased geo-
metrically during training. Progressively smaller weight changes are made to nodes further away fram the
winning cell,

For the case of input vectors with missing values, Samad & Harp (1992) presented the following modified
training procadure. Firsl, the winning node is computed using the subspace of available values. For example,
using the Euclidean metric, Instead of

mn =i(wu -.1")2

im]

where o/ ia the distanca betwean }'s weight vector w; and the input vector, x, and n Is the dimensionality of

1. The development and nolation used here is essentially that of Samad & Harp, and is presenied lor complateness,
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FIGURE 2. Upper. input vectar is compared with nat weight vactors: the winning unit Is chosan as that
whosa weight vector most closely malches the Input vecior, as determined by a distance melric.
Lower. Dislance melrics used in various exparimental conditions. See text for details.

the vector we would compule:
m= %, (wy-x)
lepresent

where present Is the set of inpul units, i, for which values x, are available at ime . This is illustrated In the
table in figure 2, which also gives formulas for a further distance metric used Inn experiments delalled later.

Having found the winner, waight modifications are applied only 10 those eloments of the welght vector corre-
sponding to Input values which are present:
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Awy(n) = {3(:)exp[-d’ ()20 (1)](x; —wy(0)) ifi € p;:cn.-

In the experiments described In sections 3 and 4, we modified tha public-domain SOM_PAK software for Ko-
honen net simulation (Kohonen, Kangas & Laaksonen, 1992) in accordance with the faregoing, to handle par-
tial data.

3. LEARNING FROM PARTIAL DATA

A net of dimensions 19x13 was used: recognition tests were performed after the nets had been trained using
two epochs of 39000 and 195000 presentations and with learning rates of 0.01 and 0.05 respectively’. The
Input rapresentation was produced by a 84-channel gammatone filterbank, with channel centre-frequencies
equally spaced on an ERB-rate scale batween 200 and 5500 Hz, and the cutput of each filter procassed by
amodel of inner hair cell transduction (Meddis, 1988), smoothed over a 10 ms window. Training and test data
was gensrated from utterances produced by a single male Japanese speaker from the ATR large-scale
speech database (Kurematsu ef al., 1200)2. A balanced set of 250 framas of each of the 27 labels was ran-
domly selected for use as testing data; from the remaining labels, 1000 were randomly selected as training
data (when thera were Insufficient instances of a particular label, repetitions wers mads)®.

Recognition performance of nels rained with varying proportions of data deleted from the Input vectors was
investigated in a series of 10 different conditions, In which during tralning Input vector components ware de-
leted at random with a probability which varied in from 0.0 {no deletion} to 0.9 (80% deletion). The trained
nets were calibrated (i.e. one of 27 phone labels was attached to each cutput node) using tha training set,
and thelr recognition performance measured In terms of recognition accuracy — simply the percentage of
labels in the test set correctly identified. Results of these experiments are given In the feft panel of figura 3,
which shows recognilion accuracy as a function of detetion probability during training.

Performance Is ramarkably robust (albeit at a low baseline level) across all deletion conditions. Recognition
accuracy barely drops, even when 90% of the frame s delsted at random. A useful visuallsation of the whola
trained net can be obtained by displaying the network weights in a spectrogram-like fashion, as shown In fig-
ure 4 which ilustrates the similarity between nets trained using complete data vectors and thosa trained with
85% of the components deleted at random*,

4. RECOGNITION FROM PARTIAL DATA
A second series of experiments was conducted to determine the effect of deletion of data during recognition.

The procedure followed the same pattern as for the training experiments, but with a second dimension: during
the recognition process, components in the input veclors were randomly deleted with a probability of between

1. Pilet studies indicated that nats of size 17x11 and smaller were unable to adequately encoda the label-set,
whareas Increasing net dimensions above 18x13 gave diminishing improvements in perfarmance for escalating
processing requirements. Similarly, increasing the length of training runs did not significantly Improve perfor-
mance, whilst again lengthening the time required for training.

Expariments have also been conducied using data from muttiple spaakers Irom the TIMIT database, and using
a PLP reprasantation (Hermansky, 1990) as input to the nets, with similar results.

3. In a series of pilot studies it was found that non-balanced training data gave worse results than for balanced
training (thls might be expected, since the net then lended to be dominated by frequently-occurring labels, olten
to tha exclusion of less-frequent ones). Furthermore, for this application, increasing the size of the Iralning set
did not appreciably improve performance.

4. This corresponds to approximately the proportion of daletions through simulated auditory scane analysis as de-
scribed later.
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FIGUHE 3. Left Recognition accuracy vs. probability of component deletion during training.

Recognition accuracy vs. probability of component deletion during recognition, for various
prol:'abmm of deletion during training (given by the inset legend); see text for details of ASA
condition
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FIGURE 4. Spactrogirsm -like plots of net weight vectors (1 frame = 1 node) sorted by label (within-

labe! order s insigniticant) for nets trained using (/eff) complete data vectors and (right) data vectors

with 85% of the components randomly deleted.
0Oand 0.9, again in steps of 0.1. This gave a total of 100 results for each representation (10 deletion conditions
during training by 10 deletions conditions during recognition), which are selectively summarised in the right
panel of figure 3: again, recognition performance is encouragingly robust for nets trained in all conditions.

Of course, the distribution of deletions as a result of auditory scene analysis will be anything but random. In
order to simulate the effects of ASA-deletions, a “mask” was created which denoted positions of spectral
peaks in each frame of the test data. Spectral peak information was derived from Cooke's synchrony strand
(Cooke, 1993) representation, which has been used as the basis for a model of auditory scene analysis.
These peak positions were used to indicate channels in the input vector for which data was “present” (and
corresponds to a deletion probability of around 85%). Using these “correlated” deletions improves recognition
accuracy, as can be seen from the “ASA” point on the graph in figure 3.

5. EXPLOITING AN AUDITORY CONTINUITY CONSTRAINT

As was noted earlier, under certain circumstances the auditory system induces missing information. This
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phenomenon is referred to as auditory induction; related to speech it is called the phoneme restoration effsct
(cf. Bashford & Warren, 1987). A sound interrupted by noise bursts will, in the right conditions, be perceived
as continuing through the noise. One constraint on auditory induction Is that there has to be sufficient energy
in the missing regions to allow the missing segment to be inferred; hence, there is reason to assume that the
recognition process Itself has access to something more like a complete auditory scene.

We can make use of this constraint in the recognition procedure by adding a component to the distance met-
ric for any missing components whose maximum value (provided by the level in the mixture) falls below that
expected on the basis of the components which are present. In other words, the incomplete vector defines a
possible matching pattern, whose values (weights in the Kohonen net) represent a prediction of the expected
energy at that spectral place. If there is insufficient energy in the mixture at that place, then there is certainly
insufficient in any source which makes up the mixture: this is illustrated in figure 5.

“present” channels

Best match Incorrect match

FIGURE 5. Auditory induction constraint: the “best maich” panel shows a correct maich between the
m{ugligmy)mmnetwe@ﬂ swkw )Thedismorrmsmehdahrtrinsd

pr by standard metric. Th: owsamatchbetweonihesamalnput

vector and a net weight vachorwtﬂcn axpecl.s'mowmerwmanwpmsant in the signal.

The implementation of this constraint is shown in the third row of the table in figure 2. Figure 6 presents the
results of adding this constraint to the recognition algorithm, and clearly shows a further flattening of the rec-
ognition curve as the probability of deletion increases. This demonstrates that even simple-minded applica-
tion of auditory induction (better estimates of the missing components could be obtained using greater
temporal context, for instance) prove beneficial in this architecture.

5. DISCUSSION

The computational studies reported in this paper show that speech recognisers do not necessarily require
information from all spectral regions in order to function adequately. More important is the demonstration that
it is still possible to learn, despite missing elements. We regard these results as sufficiently encouraging to
pursue a new approach to robust ASR, based on an initial stage of auditory scene analysis, followed from
recognition from partial data.

Of course, these studies are limited in extent and have presented a low baseline recognition performance,
well below that which it is possible to achieve in more sophisticated recognition architectures. In other studies
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{reported In Cocke, Green, Anderson & Abberlay, 1994), we show that it Is possible (o modify the power sto-
chastic framework of HMMs to handla incomplete observation vectors. We have yet lo demonstrate training
within the HMM approach, but believe both that aspect, and the use of an auditory induction constraint, can
be incorporated into the Viterbi search,

A further limitation is the lack of temporal context in the tralning/recognition process. In raal listening sltua-
tions, we would expact deletions to be corvalated from Instant to instant {due 1o comelations in beth fore-
ground and background sources). it is not obvious whether this will Improve or degrade resulls; however,
early results using the HMM approach — In which context does play a part — Indicate that selective retenlion
of spactral peaks produces enhanced performance.

The potential of ASA as a basis for robust ASR is clear — the new approach makes no assumptions about
the number of acoustic sourcas present at any time, their prominance, or thelr spectro-temporal content. ASA
therefore holds the promise of providing a general answer to the problem of speech recognition in a wide
range of unprediciable acoustic conditions, free from the canstraints afilicting mos! other proposed solutions.

What of the implications for speech perception? This study provides the first constructive demenstration of
process which infants might use to form auditory-phonclogical representations in normal listening conditions.
The process is based on an unconditional stage of scene analysis, followed by organisation of the resulling
fragmentary evidence. it is unlikaly that the details are anything like those in our modet, but the slmulations
presented here at least show one mechanism which can explain why infants need not be confined to an
anechoic chamber for the first few months of life (unilke most ASR devices!).

Itis possible to speculate further. Suppose speech perceptien Is forcibly conditioned on the results of primitive
scene analysis. One possibility Is that access to *speech schemas’ — stored representations of speech
sounds —is primarily via fragmentary descriptions. Further, top-down interaction could occur in a verificatory
mode, as suggested by the auditory induction constraint {for further elaboration of these Ideas see Cooke,
Crawford & Green, 1994; also sea Traunmdlller, 1994).
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