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1 BACKGROUND AND MEASURES OF PERFORMANCE 

Future sonar operations will be increasingly autonomous, including uncrewed vehicles operating over 
long periods of time in remote areas with little or no mission planning/replanning input from expert 
operators. Machine Learning (ML) has the potential to support the autonomous repositioning of 
vehicles for optimising sonar operations. To investigate this potential, work was conducted to develop 
and test probabilistic ML algorithms for classifying the underwater environment using only acoustic 
Transmission Loss (TL) data. Environmental classification would then enable appropriate positioning 
strategies, for example adjusting spacing between distributed sonar systems in order to maintain 
detection coverage for environments with differing acoustic propagation characteristics. An incorrectly 
classified environment could lead to inefficient use of sensors (i.e. too closely spaced when the TL in 
the environment is actually low but is classified as high) or poor coverage (i.e. the reverse). 
 
Measures of Performance (MoPs) are required in order to assess the ML classification algorithms. 
The standard metrics of classification accuracy and confusion matrix were used. In addition, a 
‘detection coverage’ MoP was constructed in order to assess the practical impact of misclassification. 
Given a TL versus range curve, this was defined as the fraction of the ranges for which the TL is less 
than a fixed Figure of Merit (i.e. the maximum TL which can be tolerated for a given set of sonar, 
contact and background noise characteristics). It was used to construct a cost matrix which, when 
combined with the confusion matrix, enabled an overall performance metric to be calculated. The cost 
matrix was the same size as the confusion matrix, with zeros along the diagonal and the off-diagonal 
terms calculated from the absolute difference between the detection coverage MoP for the 
environment classes at the row and column indices (i.e. true versus that selected by the classifier). 
 
 

2 ENVIRONMENTS AND ACOUSTIC MODELLING 

The underwater environments were defined by a temperature and salinity profile, a seabed type (with 
associated density, compressional wave sound speed and attenuation values), and water depths 
(both flat and sloping seabed topographies were modelled). The oceanographic profiles and water 
depths were chosen to be representative of the UK North-West approaches’ continental shelf. 
Temperature and salinity data were obtained from the Copernicus Marine Environmental Monitoring 
Service (CMEMS). The Atlantic-European North West Shelf Ocean Physics Analysis and Forecast 
dataset [1] was used, which provided hourly interval forecasts from the Nucleus for European 
Modelling of the Ocean model, produced by the UK Meteorological Office. Temperature and salinity 
profiles were downloaded for the location 57.5°N, 8.5°W. Sound speed was calculated from 
temperature and salinity using the UNESCO standard Chen and Millero equation [2]. Seabed type 
was taken from the US Naval Oceanographic Office Bottom Sediment Type (BST) version 2 database 
[3]. The High Frequency Environmental Acoustics dataset was used, which contains 23 descriptive 
seabed types; the corresponding geo-acoustic parameters were taken from Section IV Table 2 of [4]. 
 
Nine classes of underwater environment were defined, corresponding to all permutations of three 
types of sound speed profile (Upward Refracting, Downward Refracting and Stratified) and three 
types of seabed (Low Loss, Medium Loss and High Loss). Within each of these classes, multiple 
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variants were created, in order to generate training and test datasets for the ML algorithms. The 
temperature and salinity profiles used in calculating the sound speed profiles corresponded to a 48-
hour period from midnight on the 14th to midnight on the 16th of January 2018 (Upward Refracting), 
July 2018 (Downward Refracting) and October 2018 (Stratified) – see Figure 1. The bathymetry 
profiles consisted of flat and sloping seabed variants with constant gradients for the sloping variants. 
 
For the training data, 1200 variants were created, corresponding to all permutations of: 

• 16 sound speed profiles, taken from ocean model forecasts every 3 hours over a 48-hour 
period starting at 0 hours, i.e. at times 0, 3, 6 … 45 hours; 

• 5 seabed types (similar types within the available BST types); 

• 15 bathymetry profiles, both flat and sloping, with water depths between 150 m and 200 m. 
For the test data 320 variants were created, corresponding to all permutations of: 

• 8 sound speed profiles, taken from ocean model forecasts every 6 hours over a 48-hour 
period starting at 1 hour, i.e. at times 1, 7, 13 … 43 hours; 

• 4 seabed types, linearly interpolated at the midpoints between the five training variants; 

• 10 bathymetry profiles, similar to but not the same as the training profiles. 
Hence the test dataset is completely independent of the training dataset. 
 

 
Figure 1 - Sound speed profiles: upward refracting (left), downward refracting (centre) and stratified 
(right). The blue curves are training data, the red curves test data. All profiles go to the maximum 
modelled water depth of 200m. The sound speed varies over depth by approximately 3m/s, 20m/s 

and 5m/s for the upward refracting, downward refracting and stratified cases respectively. 
 
The Low Loss seabed variants were taken from BST indices 2 to 7 (Rock, Cobble or Gravel or Pebble, 
Sandy Gravel, Very Coarse Sand, Muddy Sandy Gravel), the medium loss variants from indices 9 to 
13 (Medium Sand or Sand, Muddy Gravel, Fine Sand or Silty Sand, Muddy Sand, Very Fine Sand), 
and the high loss from 18 to 22 (Sandy Mud or Silt, Fine Silt or Clayey Silt, Sandy Clay, Very Fine 
Silt, Silty Clay). This range of BST types encompasses densities from ~1.1 to 2.5 g/cm3 and sediment-
to-water sound speed ratios of ~0.98 to 2.5, i.e. a wide range of seabed reflectivity would be expected. 
The seabed was modelled as a single isotropic infinite layer. 
 
Acoustic Transmission Loss (TL) was calculated using the PyRAM acoustic model [5], which is a 
Python adaptation of the Range-dependent Acoustic Model (RAM) [6]. Water volume attenuation and 
sea surface loss/scattering are not included in PyRAM (nor in the original RAM model). This is not 
considered a limitation at the low frequencies modelled here, e.g. at 1 kHz (the centre frequency used 
in the modelling) the water volume attenuation over 50 km equates to around 3 dB (using the 
Francois-Garrison formula), which is considerably lower than the TL variations between the 
environmental classes seen below. The acoustic modelling parameters were as follows: 

• The source and receiver depth were both 40m, chosen so that the stratified profile has an 
acoustic effect (the profile changes gradient at 60 m – see the right-hand plot in Figure 1); 

• The calculation frequencies were 900 Hz to 1100 Hz every 10 Hz, and TL was averaged over 
frequency in order to give a smoother, hence more realistic curve; 

• TL was calculated every 100 m out to a range of 50 km. 
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The TL training data is shown in Figure 2. The span of minimum to maximum TL values at each range 
is shown for each of the 9 classes in separate plots. The FoM values of 75 dB, 80 dB and 90 dB used 
for the detection coverage MoP (see Section 1) are shown as dashed red lines. Although the High 
Loss / Downward class is an obvious outlier, there is considerable overlap between many of the other 
classes. At first glance, with the exception of the High Loss / Downward class, it would not seem a 
feasible task to classify the environment based upon these TL curves, particularly if only a small 
segment of the curve was available (which might be the case in practice due to a short vehicle track). 
 

 
Figure 2 - TL training data for all nine classes, with FoM values of 75dB, 80dB and 90dB used for 

the detection coverage MoP shown as dashed red lines. 

 
Figure 3 - Cost Matrix with FoM values of 90 dB (left), 80 dB (centre) and 75 dB (right). 
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Figure 3 shows the cost matrix referred to in Section 1 for each of the three different FoM values, 
produced from the TL data by calculating the detection coverage MoP for each of the 1200 training 
data variants and then averaging over the variants. The indices 1 to 9 follow the nine classes in row 
order as per Figure 2, i.e. index 1 is HighLoss-Upward, 2 is HighLoss-Downward, etc.  The cost matrix 
clearly depends strongly on the selected FoM value (to be expected, as the FoM value determines 
the relevant portion of the TL curve). For the FoM=90 dB case, the only significant cost is 
misclassifying the HighLoss-Downward class as any other class. This is because only the HighLoss-
Downward class has the majority of TL values greater than 90 dB (beyond about 10 km all TL values 
exceed 90 dB). As the FoM reduces, more structure becomes visible in the Cost Matrix. At 80 dB the 
highest costs are for misclassifying HighLoss-Downward as MedLoss-Upward or as any LowLoss 
classes, with a similar trend but more structure at 75 dB. 
 
 

3 MACHINE LEARNING ALGORITHMS 

The problem was cast as one of multi-dimensional classification with the number of dimensions given 
by the number of ranges at which TL data was available (500). Each class in the training data set 
comprises 1200 samples, and each sample is therefore a point in 500-dimensional space. Beyond 
direct examination of the TL curves (Figure 2), to visualise how the data is distributed both within and 
across classes, a number of methods were applied for projecting the data down to two dimensions 
where relevant structure might be visually inferred (although information is inevitably lost during the 
dimension-reduction process). The examples shown in Figure 4 are principal component projections 
- the orthogonal linear projection (down to two dimensions in this case) that retains maximum 
variance. As this is a linear projection, groups of points (e.g. representing classes) that are separable 
in the projection must likewise be separable in the data space. However, separable classes in high-
dimensional space may overlap in the projection. 
 

    
Figure 4 - PCA projection of all classes (left) and of the upward-refracting profile classes (right). 

 
The linear projections in Figure 4 show separation of the data points both across and within classes 
(plots were also produced for the downward-refracting and stratified profile classes which also 
showed separability). Due to the implied separability in the data space, this suggests at least the 
feasibility of classification. 
 
The key question for a ML approach to classifying the TL curves was in respect of which direction the 
data was modelled. There are two options: as a mapping from curves to class label (discriminative 
modelling) or from class label to curves (generative modelling). Generative models seek to 
approximate the “causal” (“forward”) direction of the observed data, while classification is effectively 
an “inverse” modelling process. The underlying motivation for generative modelling is that the forward 
mapping should be smoother than in the inverse direction, and so should be easier to capture in any 
model (and so, potentially requiring less data). A class-specific generative model would map from 
label to observed data; classification is then done indirectly, by measuring and comparing the 
probability those various generative models assign to new data. 
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A generative modelling approach was chosen for three reasons: 

• Given the complexity and dimensionality of the problem (1200 training points vs 500 
dimensions), we did not have sufficient data (by at least one order of magnitude) to be able 
to apply many of the more effective discriminative techniques, especially for the ubiquitously 
popular deep neural network class of models. 

• A key feature of the problem is that, in a practical scenario, we will only have access to a 
limited number of points on the TL curve, and our models need to be able to make predictions 
in that scenario. For discriminative models, this is a serious challenge. Conversely, given an 
appropriate choice of generative model, it is in principle straightforward to compute the 
probability over a subset of points (a statistical calculation known as “marginalisation”). 

• It is possible to detect novel or unusual data that has not been seen before (the classifier 
system would have the capacity to say “don’t know”). 

 
To perform classification in a generative modelling context, we first develop, based on the training 
set, a class-conditional probabilistic model of each of the nine classes, 𝑃𝑘(𝐭|𝑘), with 𝑘 = 1…9. Then, 

given new data (a TL curve, or a subset of it), we may compute the predictive probability 𝑃𝑘(𝐭|𝑘) given 
by each of the nine class-conditional models. This may be trivially converted (using Bayes’ rule) into 
a posteriori probability of belonging to each class, 𝑃(𝑘|𝐭), and this can be very readily used for 
classification (i.e. to assign the curve to the class giving the highest posterior probability). 
 
The question is then what form the generative models 𝑃𝑘(𝐭|𝑘) should take. There are a wide range 
of options, of which three were identified as follows (in increasing order of complexity): 

1. “Probabilistic PCA” (PPCA) [7]: This is a multivariate Gaussian model, applied directly in the 500-
dimensional signal space, using a principal component parameterisation to constrain complexity. 
A persuasive feature of this “Gaussian process” class of approach is that it is straightforward to 
compute the marginalisation required to make predictions for limited numbers of observation 
points on the curve. 

2. “Latent Variable Gaussian Process” (LVGP). Developed specifically for the study, this is an 
alternative form of Gaussian process that is defined implicitly in terms of a weighted expansion 
of fixed basis functions. It has similar expressive power to the PPCA approach, and 
marginalisation is again straightforward, but this model has the additional benefit that it can be 
evaluated at arbitrary ranges and resolutions. 

3. “Generative Neural Network” (GNN). This may be considered a non-linear extension of the above 
LVGP approach, based on adaptive basis functions. The non-linearity of this approach in principle 
offers greater flexibility in signal representation, despite the considerable computational cost. 

 
Regardless of model selected, the high dimensionality of the data (and the comparatively few training 
examples available for each class) leads to a danger of over-fitting during model development. It was 
therefore necessary to carefully tune model complexity based on the training data, and for this 
purpose a standard cross-validation procedure was adopted. 
The primary focus of the work was on implementing and testing the PPCA model. The LVGP model 
was also implemented, with promising preliminary results. The GNN model proved computationally 
problematic so was not pursued (in part due to the success of the other algorithms – see Section 4).  
The starting point for implementing the class-conditional models 𝑃𝑘(𝐭|𝑘) was the multivariate 
Gaussian model given by Equation (1). The multivariate Gaussian model is parameterised by its mean 
vector 𝐦𝑘 and covariance matrix 𝐂𝑘. Note that these parameters are specific to each of the classes: 
it will be necessary to fit nine such models, one to each of the nine 1200-sample training data sets. 

𝑃𝑘(𝐭|𝑘) ∝ exp {−
(𝐭 − 𝐦𝑘)

𝑇𝐂𝑘
−1(𝐭 − 𝐦𝑘)

2
} 

 (1) 

A key motivation for adopting a generative modelling approach was the requirement to be able to 
apply models to a subset of the data, i.e. a subset of elements of the vector 𝐭. This requires integrating 
out the unobserved sample points from the joint distribution defined above so as to compute the 
marginal distribution over the observed samples only. For a multivariate Gaussian, this marginal 

computation is straightforward – if we observe a subset of points on the TL curve 𝐭̂, then the class-
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conditional marginal is simply a modified Gaussian distribution of the same form as Equation 1 with 𝐭̂ 
replacing 𝐭, 𝐦̂𝑘 replacing 𝐦𝑘 as the subset of the mean vector corresponding to the observed points, 

and 𝐂̂𝑘 replacing 𝐂𝑘 as the covariance matrix realised by retaining only the rows and columns 
corresponding to the observed points. As such, any Gaussian model derived from the full data may 
be readily applied to any subset of it.  However, the covariance 𝐂 that must be estimated for each full 
class-conditional model is a 500 × 500 matrix, which equates to a huge number of parameters to be 
specified in the context of 1200 data samples. In order to avoid over-fitting, it was essential to adopt 
a more concise parametric representation. A basic approach would be to utilise a simple isotropic 

model (𝐂 = 𝜎2𝐈, one parameter), or more flexibly, a diagonal covariance (500 parameters). An even 
more flexible option is the PPCA parameterisation (500. 𝑞 + 1 parameters). This allows the model 

complexity to be tuned through adjustment of the parameter 𝑞, the approach adopted here. The PPCA 
parameterisation controls complexity of the covariance model via a restricted-rank decomposition: 

𝐂 = 𝐖𝐖𝑇 + 𝜎2𝐈 
 (2) 

where 𝐖 is a 500 × 𝑞 matrix, with 𝑞 free to be chosen. This captures the covariance structure in a 𝑞-

dimensional subspace precisely, while very roughly approximating the remainder (in the 500 − 𝑞 

dimensional orthogonal subspace) by an isotropic (spherical) model with scalar variance 𝜎2 in all 
directions. The model was fitted to the data following the standard maximum likelihood procedure, 
and a convenient feature of the PPCA parameterisation is that there is an analytic solution: the 
columns of 𝐖 are proportional to the eigenvectors of the measured sample covariance matrix.  In 

terms of “tuning” the PPCA model, it is necessary to set the 𝑞 parameter appropriately. This was 

achieved using 25-fold cross-validation. The process was to vary 𝑞 over a chosen range, build the 
nine class-conditional models with the given 𝑞, and assess each value by measuring the classification 

error on the held-out data. In this case, a single shared value of 𝑞 is assumed for all class-conditional 

models. In principle, we would expect to improve the overall classification accuracy by allowing 𝑞 to 
be tuned per class, but as this is computationally expensive (the search space grows exponentially 
with the number of models), optimisation of multiple 𝑞 values was not undertaken.  Note that 𝑞 = 0, 

giving 𝐂 = 𝜎2𝐈, is the simplest (isotropic covariance) Gaussian model as noted above. Implicitly, new 
data will be classified according to the nearest class mean 𝐦𝑘. With 𝑞 = 2 we have a slightly more 
complex model, loosely analogous to working in the space of the previous PCA visualisations. The 
outcome of the process described above was that the lowest mis-classification rate (2.34%) was given 
for 𝑞 = 9, hence this represented the best model, based upon the training set. 
 
 

4 RESULTS 

The confusion matrices for the PPCA model (with 𝑞 = 9) are shown in Figure 5 for both the training 
dataset and the independent test dataset. The error rates are shown above the matrices, i.e. the 
classification accuracy was 97.66% for the training dataset and 93.19% for the test dataset. 
 

 
Figure 5 - Confusion matrix for the q=9 model against the training data (left) and the test data (right) 
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Given the observations made on the TL data in Section 2, the performance shown in Figure 5 
significantly exceeded expectations. The (limited) evaluation of the LVGP model showed an even 
higher accuracy of 96.22% (using 66 selected basis functions). However, this was a preliminary result 
as the time was not available to conduct as robust an evaluation process as for the PPCA algorithm. 
 
Having trained the classifier and proved its accuracy against the independent test dataset, the 
remaining questions were on the performance with only a subset of TL data made available, and the  
practical impact of misclassification. A number of simulations were performed where the classifier 
was presented with sections of TL curves representative of data collection over practically reasonable 
timescales (~45 and 90 minutes) at a vehicle speed of 2 knots, i.e. 2.5 and 5km sections respectively. 
Simulations included examination of a single variant (TL curve) with fixed and variable starting ranges 
and successively more data points, and averaging results over multiple variants and starting ranges 
to give representative average performance, as well as calculating the overall performance metric 
(combining confusion and cost as described in Section 1). Figure 6 portrays how class probability for 
a single test variant within three classes varies over range from a given starting range.  The starting 
range was different in each case. 
 

 
Figure 6 - Class probability averaged over all test variants for multiple starting ranges 

 

 
Figure 7 - Class probability averaged over all test variants for multiple starting ranges 
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In Figure 6, test variant number 99 was arbitrarily selected from the test data for the three classes 
LowLoss-Downward, MedLoss-Stratified and LowLoss-Upward. In each case the bold curve 
corresponds to the true class.  The LowLoss-Downward and MedLoss-Stratified show good classifier 
performance over a 5 km range interval, which becomes more certain of the correct classification as 
more data is gathered over time. The LowLoss-Upward plot is an example of a case where the model 
fails to classify correctly with a high level of certainty. 
 
Figure 7 shows the class probabilities averaged over all test variants for multiple starting ranges, 
using intervals of 5 km. The accuracy for all High Loss classes is immediately evident, in particular 
for the Downward and Stratified classes which show close to 100% certainty across all starting 
ranges. Accuracy for the Medium Loss classes is also encouraging, with Upward and Stratified profile 
types specifically having a relatively constant and high probability of correct classification across all 
starting ranges. Accuracy for the Low Loss classes is generally lower. However, it is worth noting that 
the correct class is always assigned the highest probability even though the absolute probabilities are 
lower than for the Medium Loss and High Loss classes. The averaged confusion matrices and 
performance metrics were also evaluated during the simulations. The performance metric was always 
above 95%, indicating that even when misclassification occurred, the cost was low. 
 

5 CONCLUSIONS 

The principal classification model investigated (PPCA) showed very good performance against the 
test data, with a classification accuracy of over 93%. When presented with short intervals of data (2.5 
and 5km), the classifier still performed well, with performance metrics (taking into account the practical 
impact of misclassification) over 95%. Preliminary results from the LVGP model were also suggestive 
of good performance. There may be scope for further improvement of the PPCA algorithm with 
additional training data. The classification accuracy exceeded expectations given the complexity of 
the data, and there is potential for exploitation across a number of marine acoustic application areas. 
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