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The prediction of vibration transmission in collapsed and fragmented reinforced-concrete build-

ings has the potential to inform decisions about the possibility to detect human survivors trapped 

in buildings after earthquakes by using structure-borne sound propagation. In collapsed buildings 

there are many uncertainties such as the collapse pattern of the building and the contact conditions 

between the debris. In this research, a statistical rather than a deterministic model is being devel-

oped to predict vibration transmission through the debris of a collapsed building. This paper assess 

the potential to use Statistical Energy Analysis (SEA) to model vibration transmission between 

two reinforced concrete beams when they are resting on top of each other. An experimentally 

validated finite element model of two beams was used to carry out a Monte Carlo simulation with 

30 beam junctions in random formations. Coupling loss factors were determined with FEM data 

using Experimental SEA and these were compared against theoretical models based on a lump 

spring connector. 
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1. Introduction 

Earthquakes have the highest rate of mortality among all the natural disasters. From 1970 to 2009, 

36% of fatalities that have occurred due to natural disasters are due to earthquakes [1]. When victims 

are trapped inside a collapsed building, the challenge is to detect and locate survivors within a period 

of time that will allow them to be rescued. The majority of documented live rescues are accomplished 

within the first six days [2]. However, important variables affect the survivability including the struc-

ture type and void space formation, the cause of the structural collapse, the survival location in the 

building and the speed and sophistication of available search and rescue capabilities [3]. The predic-

tion of vibration transmission in collapsed and fragmented reinforced-concrete buildings has the po-

tential to inform decisions about the possibility to detect trapped human survivors by using structure-

borne sound propagation. This research forms part of a funded project concerning an approach to 

search for human survivors using structure-borne sound propagation in collapsed and fragmented 

structures through the development, validation and use of theoretical models.   
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The aim of this paper is to assess the potential to use Statistical Energy Analysis (SEA) to model 

vibration transmission between two reinforced concrete beams when they are stacked on top of each 

other (i.e. no bonded connection). Finite Element Methods (FEM) are used to create a model of an 

X-shape beam junction which is experimentally validated against the results of experimental modal 

analysis. The FEM model is used to create an ensemble of 30 beam junctions for a Monte Carlo 

simulation. Experimental SEA is used to determine coupling loss factors between the two beams from 

the FEM data for comparison against theoretical models based on lump spring connectors.  

2. Methods 

2.1 Experimental work 

2.1.1 Test specimens and setup 

The experimental samples consist of two reinforced concrete beams (C25/30, S500) with the same 

dimensions (2.4 m length, 0.2 m width and 0.3 m depth). Beams 1 and 2 are reinforced with four and 

eight longitudinal steel bars of 16 mm diameter, respectively. The transverse reinforcement of both 

beams consists of 8 mm diameter stirrups placed at 200 mm centres along the beams. 

An X-shape beam junction was formed after placing beam 2 on top of beam 1, which is supported 

by two aluminium square bars (see Fig. 1). The angle between the two beams was 41. 

  

  

Figure 1 - Test setup showing the test equipment and the X-shape junction formed by beams 1 and 2. 

2.1.2 Experimental modal analysis 

Experimental modal analysis was carried out to identify the eigenfrequencies and mode shapes of 

the setup. The beams were excited using an impact hammer (Brüel & Kjær Type 8200) and the out-

of-plane response was measured using three accelerometers (Brüel & Kjær Type 4371). Brüel & Kjær 

Pulse Reflex software was used for signal processing and modal analysis. During the modal testing, 

the accelerometers remained at fixed positions whilst the impact hammer was moved along the exci-

tation points. 

2.2 Finite element models 

Two FEM models of the beam junction were developed in Abaqus v6.14 [4] and eigenfrequency 

analysis was carried out to identify their dynamic characteristics (eigenfrequencies and modeshapes). 

The solid element C3D20R (20 nodes) and the beam element B32 (3 nodes) were selected from the 

element library of Abaqus to model the concrete and the steel bars respectively. The mesh density 

fulfils the requirement for at least six elements per wavelength in structural and vibroacoustic prob-

lems [5].  

The linear spring element, SPRING1 was selected from the Abaqus element library to approximate 

the elastic support provided by the square-section aluminium bars to the lower beam, beam 1. The 
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contact between the two beams was modelled using the general contact algorithm of Abaqus/Standard 

and was defined to have either only elastic normal behaviour (FEM model 1) or both elastic normal 

and rough tangential behaviour (FEM model 2). The latter was implemented assuming an infinite 

friction coefficient such that the common nodes of the contact area moved together in the horizontal 

plane. After model updating, the stiffness of the springs was estimated to be 4.1E05 N/m and the 

normal stiffness of the contact was estimated to be 7.54E08 N/m and 2.66E08 N/m for FEM models 

1 and 2 respectively. This gave a factor of 2.8 between the normal contact stiffness of FEM models 

1 and 2.  

 Table 1 shows the physical and mechanical properties of the materials used in the model. More 

information regarding the estimation of the material properties can be found in [6]. 

 

Table 1: Material properties. 

Material Density, ρ [kg/m3] 
Young’s modulus, 

E [N/m2] 

Poisson’s ratio, 

ν [-] 

Concrete 
Beam 1 2328.7 36875E06 

0.2 
Beam 2 2245.2 32475E06 

Steel 7800 200E09 0.3 

 

2.3 Monte Carlo simulation 

The experimentally validated FEM model 2 (with normal contact stiffness equal to 3.33E08 N/m 

based on previous experiments [6]) was used as a basis for creating a sample of 30 beam junctions 

using Monte Carlo simulation [7]. In each junction, the relative position of the two beams was sam-

pled from a uniform distribution whereas the angle between the two beams remained constant at 41. 

Both beams had the same material properties (average values of beams 1 and 2) and were assumed to 

have simply supported ends as indicated by the orange symbols in Fig. 2. In order to increase the 

modal density beyond that of the beams in the physical experiments, beams 1 and 2 were assumed to 

have lengths equal to 6.0 and 5.0 m respectively. 

 

Figure 2 - Example of two beam junctions used in the Monte Carlo simulation. 

 

2.4 Experimental Statistical Energy Analysis (ESEA) 

FEM models used mode-based steady-state dynamic analysis to calculate the dynamic response of 

the 30 beam junctions up to 3200 Hz considering only the out-of-plane (i.e. y-direction) bending 

modes. The critical damping, ζ, was set to be equal to 0.05. The beams were excited using rain-on-

the-roof excitation (i.e. forces with unity magnitude and random phase); all the nodes of the lower 

surface were excited on beam 1, and all nodes of the upper surface were excited on beam 2.  
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Each beam represents one subsystem and the output from the FEM models was used to calculate 

the subsystem energy and power input that apply to an SEA model of each beam junction. These 

FEM data were then used in ESEA to determine coupling loss factors. 

 

The general ESEA matrix solution for two subsystems is given by [8] 

 

                                   [
∑ 𝜂1𝑛
2
𝑛=1 −𝜂21
−𝜂12 ∑ 𝜂2𝑛

2
𝑛=1

] [
𝐸11 𝐸12
𝐸21 𝐸22

] = [

𝑊in(1)

𝜔
0

0
𝑊in(2)

𝜔

]                                   (1) 

 

where ηij is the coupling loss factor from subsystem i to j, ηii is the internal loss factor for subsystem 

i and Eij is the energy of subsystem i when the power is input into subsystem j. 

The energy associated with each subsystem is given by [8] 

                                                                               

                                                                𝐸 = 𝑚〈𝑣2〉𝑡,𝑠                                                                      (2) 

 

where m is the mass and <v2>t,s is the temporal and spatial average of the mean-square velocity of 

all the unconstrained nodes of the beam subsystem.    

For rain-on-the-roof excitation at P nodes the power input, Win is given by [8] 

 

                                   𝑊in =
𝜔

2
∑ (Im{𝐹̂}𝑅𝑒{𝑤̂} − Re{𝐹̂}𝐼𝑚{𝑤̂})

𝑝
𝑃
𝑝=1                                              (3) 

 

where F is the force and 𝑤̂ is the peak out-of-plane displacement associated with each node. 

2.5 Theoretical model based on lump spring connector 

For N identical point connections between two beams, the coupling loss factor from beam i to 

beam j can be calculated using [8] 

                                                              𝜂𝑖𝑗 =
𝑁

𝜔𝑚𝑖

𝑅𝑒{𝑌𝑗}

|𝑌𝑖+𝑌𝑗+𝑌c|
2                                                             (4) 

 

where mi is the mass of beam i. 

The driving-point mobility of a thin beam of infinite extent, for excitation of bending waves in the 

central part of the beam is given by Eq. 5 [8] 

 

                                                 𝑌 = ((1 + 𝑖)2.67𝜌𝑆√𝑐L,bℎ𝑓)
−1

                                                 (5) 

 

where S is the cross-sectional area of the beam, h is the depth of the beam, f is frequency, and cL,b 

is the phase velocity of the beam for quasi-longitudinal waves. 

The driving-point mobility of the point connection, Yc, can be calculated using Eq. 6 [8] 

 

                                                                   𝑌c =
𝑖2𝑓

𝑘
                                                                          (6) 

 

where k is the dynamic stiffness of the point connection acting as a spring (N/m).  

For rigid point connections the stiffness can be assumed to infinite; hence Yc = 0. 
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3. Results 

3.1 Experimental validation of the FEM model 

Close agreement was achieved between FEM and experimental eigenfrequencies for both models 

of the X-shape junction, as shown in Fig. 3. For all the mode pairs in the frequency range from 700 

to 3200 Hz, the percentage difference in eigenfrequencies was less than 5%. 

Figure 4 compares FEM and experimental results in terms of mode shapes using the Modal As-

surance Criterion (MAC) [9]. Note that only bending and torsional modes were included in the vali-

dation procedure of the FEM models. For FEM model 1, close agreement was achieved for the ma-

jority of mode pairs between 1000 and 3200 Hz; MAC values were greater than 0.8 for 17 of the 

mode pairs. Below 1000 Hz, the agreement is weak with the exception of the first two mode pairs 

which have MAC values greater than 0.8. For FEM model 2, close agreement was achieved for the 

vast majority of the mode pairs in the frequency range from 700 to 3200 Hz with MAC values greater 

than 0.8 for 23 mode pairs. 

The results of this validation indicate that both FEM models are sufficiently accurate to describe 

the dynamic behaviour of the X-shape junction formed by two reinforced concrete beams stacked on 

each other in the frequency range from 1000 to 3200 Hz. However, the FEM model with the rough 

tangential behaviour is more appropriate for modelling the mode pairs below 1000 Hz.  

 

 

Figure 3 - Comparison between FEM and experimental eigenfrequencies for the X-shape beam junction. 

 

 

Figure 4 - (left) MAC values for the FEM model 1, (right) MAC values for the FEM model 2  
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3.2 Comparison of coupling loss factors from lump spring theory and FEM ESEA 

Figure 5 compares the coupling loss factor, η12 for the 30 beam junctions from FEM ESEA with 

three prediction models based on a lump spring connection, one assuming an infinitely stiff spring 

and the other two using stiffness values from model updating of FEM models 1 and 2. Results are 

shown for six frequency bands with a bandwidth of 460 Hz in the frequency range from 441 to 

3200 Hz. ESEA gave negative coupling loss factors in bands below 441 Hz; hence these were not 

included on Fig. 5. 

The 30 results from FEM ESEA show a spread between 9 and 24dB. Between the 1130 and 

2970 Hz bands the majority of these curves tend to lie between the prediction models assuming a 

rigid connection (upper limit) and using the spring stiffness from FEM model 2 (lower limit). 

There is reasonable agreement between the ensemble average FEM ESEA result and the predicted 

value using the stiffness value from FEM model 1. The differences were below 5 dB for the 670, 

1130 and 1590 Hz bands and between 5 and 8 dB for the 2050, 2510 and 2970 Hz bands. Considering 

the relatively low mode counts this is typical of the agreement between SEA and measurements ob-

served for heavyweight building elements [8]. 

There is poor agreement between the ensemble average FEM ESEA result and the predicted value 

using the stiffness value from FEM model 2. This is attributed to the fact that the rough tangential 

behaviour is not considered in the lump spring model.  

 

 

Figure 5 - Comparison of FEM and theoretical coupling loss factor η12. Light grey lines correspond to η12 

calculated with FEM ESEA for the 30 junctions, the green line shows the ensemble average of the 30 η12 

values from FEM ESEA with 95% confidence intervals, the blue dashed line shows the predicted value of η12 

when Υc=0 and the black and red dashed lines show the predicted η12 when Υc is calculated using Eq. 6 with 

the stiffness determined from model updating of FEM models 1 and 2 respectively. 
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4. Conclusions 

For an X-shape junction of two beams stacked on top of each other, the eigenfrequencies and mode 

shapes from FEM modelling showed close agreement with experimental modal analysis. Two FEM 

models were used with elastic normal behaviour (FEM model 1) or elastic normal and rough tangen-

tial behaviour (FEM model 2). Both FEM models achieved close agreement in the frequency range 

from 1000 to 3200 Hz but only FEM model 2 was in close agreement below 1000 Hz.  

Using FEM, an ensemble of 30 random beam junctions was generated using Monte Carlo simula-

tions and ESEA was used to determine coupling loss factors between the two beams. These were 

compared with predicted coupling loss factors based on a lump spring connector. The predicted value 

using the stiffness from the model updating of FEM model 1 was in close agreement with the ensem-

ble average coupling loss factor. Predicted values assuming a rigid connector and the stiffness from 

the model updating of FEM model 2 tended to provide upper and lower bounds for the ensemble 

results.  
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