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Introduction

The dynamic analysis of a structure by the finite element method
leads often to an eigenvalue problem of such a magnitude that its
eigensolutions are very expensive to obtain. Indeed the structural
dynamic flexibility matrix being fully populated it‘ is not possible
to use the same partitioning methods as in staticsfl).

two approaches have been used to solve these large eigenvalue
problems. The first one consists in seeking the atationarity points
of the Rayleigh quotient by minimization techniques (2,3). The se-
cond aims at an approximation preserving the low frequency spectrum

while reducing the order of the eigenvalue problem. Several authors

have followed such an approach (Ins); the most powerful one has been
proposed by R.G. ANDERSON, ELM. IRONS and (LC. ZIENKIEUICZ. It con-

sists in eliminating those displacements that give no appreciable

contribution to the kinetic energy. when using the finite element

methodI this algorithm alluus an easy step by step build up of the

whole structure (6) : each elimination operation produces free place

for the next assembling sequence.
The numerical results obtained show that, when the choice of re-

maining displacements is guided by some engineering skill, the loss

of accuracy can be very small.

Furthermore, it can be proved, as a consequence of the "Maximum-

minimum property of eigenvalues" established by Courant (7), that

the eigenvalues are always increased by the reduction process.

It seems however important to evaluate the loss of accuracy cau-

sed by the elimination process on the basis of a numerical criterion.

Such a bound algorithm has been proposed by G.C. WRIGHT and G.A.

MILES (5). As will be shown, more accurate error bounds for eigen-

value determination can be obtained from an application of the the—

orems of T. KATO and C. TEMPLE (9.10).

These ideas will be applied to a large scale problem : a delta -

Hing snaiyzEd experimentally and nmerically by R.J.J. TABOREK (11),

the idealization of which involves a large number of degrees of

freedom.
\

z. Elimination of variables (5.6.8) 1
The matrix equation givingthe natural circular frequencies m

and the modal shapes q of the structure is

K4 . “,2 m; (2.1)
where the structural stiffness and mass ma't'rioe- K and.H-result from
a convenientaddrossingof the elementary matrices he and me.



 

The technique used to solve (2.1) consists in choosing some dis-

placements q to be eliminated. regardless of the corresponding al-

teration of the kinetic energy. If we denoteby qR the remaining

displacements, (2.1) can be partitionned as follows :

K q M M q
KRR RC R IILII‘Z RR RC R (2.2)

“on ch “c “cs Mcc “C

By assuming that the qC give no contribution to the kinetic energy,
(2.2) reduces to

_. _2 r

KRR qn ‘ "‘ "m: “R (2'3)
_ -1 ‘

with KRR - KRR - KRC xcc KCR (2.1.) ‘

and 'fi an OK K‘ln K‘lK1m ‘nx RC cc cc cc CR
'1 . -1

‘ ch ch “an “RCch Kan (2‘5)
The eliminated displacements are restitued by the relation

_1 '

"c ' ' ch “cm “x (2'6)
It will be shown how this algorithm can be used when the structural
eigenvalue problem (2.3) is set up by coupling of substructures.

3. Alteration of the eigensolution

The error analysis of the reduction algorithm sh s that the loss
of accuracy is governed by’the ratio (m 2 , where ul denotes the

l )
Ll

first eigenvalue of the interior eigenvalue problem

2
ch qc u Mcc qc (3.1)

Therefore the displacements q to be condensed should be selected

in the structural regions of least dynamic flexibility.
It will also be proved, as'a consequence of the general maximunr

minimum property of eigenvalues establishedby Courant (7). that

the eigensolution of (2.3) furnishes an upper bound to that of

(2.1).

4. Bound algorithm

The loss of accuracy in the reduction process can be measured by

computing upper and lower bounds to exact eigenvalues of (2.1).
' Let We be an approximation to an eigenmode q associated to
the eigenvalue mi of (2.1). The correspondikg Rayleigh quotient
can be written as

H' K W '
0 O

D =W (Ll)
0 ‘ 0 .

 

A first bound algorithm, due to Krylov and Bogoliubav (l3), produ-
ces numbers AT and A: such that

l‘ < m < A (6.2)

if we know the Rayleigh quotient (ml) and the first iterate of We
defined as

-1wl - K :x Ho . (4.3)



   
     
  

   
    

  

        

   
   

 

   

      

More accurate bounds can be obtained as an application of theorems

oi l'. lam) and G. TEMPLE (14,15). It is therefore necessary to de-
terminate two numbers u and v such that

2 Z 2
w‘_1 5 u < m1 < v 5 mid (4A).

The approximate bounds u and u to the adjacent eigenvalues mi 1 and

m can be obtained by use of the first bound algorithm.
101

5. The substructure technigue

The reduction process described in sectiuh 1 allows a step by

step assembling process for the whole structure. indeed each elimi-

nation operation produces free space in core storage of the computer

for the next assembling sequence.

After the resolution of the reduced eigenvalue problem (2.3). the
approximate modes obtained can be testitued into the whole set of

structural displacements : for each substructure, the condensed

displacements are computed by (2.6).
It will also be shown that the first iterate (5.3) of each eigen-

made can be computed without assembling again the whole structure.

Indeed the elements needed to solve the static problem

K wl :- .31wa he (5.1)
can be memorized on peripheric devichiminating displacements.

6 . Numerical a iicatiun and conclusions

 

In order to prove its computational efficiency, the reduction

method has been applied to a large scale problem : a delta wing

analized experimentally and numerically by R.J.J. TABOREK (ll)
and represented by the fig. 1.

 
l-‘i . l. Idealizatian of the Delta WING

 



     
The whole structure is treated as a Kirchhoff plate : a specially
adapted conforming plate element has been generated which takes
into account the variable distance between the upper and lower
skins. and the anisotropy introduced by the skin stiffnel‘s.

The loss of accuracy produced by the reduction method is evalua-
ted by use of the bound algorithm of T. KATO and G. TEMPLE. At an
other side, the comparison with the complete eigensolution furnisheo

by the minimization techniques (3) give another verification.
The results obtained prove that the reduction method can be con-

sidered as the most economical way to solve large eigenvalue pro-
hlems.
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