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1. Incroduction

The dynamic analysis of a structure by the finite element method
leads often to an eigenvalue problem of such a magnitude that its
eigensolutions are very expensive to obtain. Indeed the structural
dynamic flexibility matrix being fully populated it'is not possible
to use the same partitioning methods as in statics{l).

Twe approaches have been used to solve these larpe eigenvalue
problems, The first one consists in seeking the stationarity points
of the Rayleigh quotient by minimization techniquea (2,3). The se-
cond aims at an approximation preserving the low frequency spectrum
while reducing the order of the eigenvalue problem, Several authors
have followed such an approach (4,5); the most powerful one has been
propesed by R,G. ANDERSON, B.. IRONS and 0,C. ZIENKIEWICZ. It con-
sists in eliminating those displacements that give no appreciable
contribution te the kinetic energy. When using the finite element
method, this algorithm alluwe an easy step by step build up of the
whole gtructure {6) : each eliminatlon operation produces free place
for the next assembling sequence,

The numerical results ohtained show that, when the choice of re-
maining displacements is guided by some engineering skill, the loss
of accuracy can be very small.

Furthermore, it can be proved, as a consequence of the “Maximum-
minimum property of eipenvalues" established by Courant (7), that
the eigenvalues are always increased by the reduction process,

It seems however important to evaluate the loss of accuracy cau-
sed by the elimination process on the basis of a numerical criterion.
Such a hound alporithm has been proposed by G.C. WRIGHT and G.A.
MILES (8). As will be shown, more accurate error bounds for eigen-
value determination can be cbtained from an application of the the~
oreme of T. KATO and G. TEMPLE (9,10),

These ideas will be applied to a large scate problem : 2 delta .
wing analyzed experimentally and mumerically by R.J.J. TABOREK (11},
the idealization of which involves a large number of degrees of
freedom.

2. Elimination of variables (5,6,8)

The matrix equation giving the natural circular frequencies «
and the modal shapes q of the structure is

Kq = wl Mg (2.1)

where the structural stiffness and mass matrices K and. Y resdult from

a convenlent. addresding of the elementary matrices ke and LI



The technique used to solve 72.1) consists in choosinpg some dis=-
placements q_ to be eliminated, regardless of the corresponding al-
teration of = the kinetic energy. If we denote by g the remaining
displacements, {2.1) can be partitionned as follows
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By assuming that the 1 give no contribution to the kinetic energy,
(2.2) reduces to
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The eliminated displacements are restitucd by the relation
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It will be shown how this algorithm can be vsed when the structural
efigenvalue problem (2.3) is set up by coupling of substructures.

3, Alteration of the eigensolution

The error analysis of the reduction algorithm shogs that the loss
of accuracy is governed by’ the ratio (m 2, , where u denotes the
1 )

u
first eigenvalue of the interior eigenvalue problem
2
Kee 9 = ¥ Mee 3¢
Therefore the displacements q . to be condensed should be selected
in the structural reglons of Eeas; dynamic flexibility,

It will also be proved, as a consequence of the general maximum—
minimum property of eigenvalues established by Courant (7), that
the eigensolution of (2,3) furnishes an upper bound to that of
2.1y,

4, Bound algorithm

The loss of accuracy in the reduction process can be measured by
computing upper and lower bounds to exact efigenvalues of (2.1).

Let wo be an approximation to an eigenmode n associated to
the eipenvalue u% of (2.,1), The cnrrespon&i&g Rayleigh quotient
can be written as '

(3.1)
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A first bound algorighm, due to Krylov and Bogoliubov (13}, produ-

ces numbers NT and Ai guch that

AT < w, <A {4.2)

if we know the Rayleigh quotient {(4,1) and the firast iterate of W

defined as 0
. =1
., = » .
) K™ HO . (4.3)




More accurate bounds can be obtained as an application of theorems
of T, KATO and G. TEMPLE (14,15). It is therefore necegssary to de-
terminate two numbers u and v such that

2 2 2

Wi SE O TWp VS W (4.4).
The approximate bounds u and v to the adjacent elgenvalues wi 1 and
wf#l can be obtained by use of the first bound algorithm,

5. The substructure technique

The reduction process described In sectioh 2 allows a step by
step assembling process for the whole structure. Indeed each elimi-
nation operation produces free space in core storage of the computer
far the next assembling sequence.

After the resolutfon of the reduced eigenvalue problem (2.3), the
approximate wodes cbtained can be restitued into the whole set of
structural displacements : for each substructure, the condensecd
displacements are computed by (2.6).

It will alsc be shown that the firat iterate (4.3} of each eigen-
mode can be computed without assembling again the whole atructure,
Indeed the elements needed to solve the static problem

KW = il Yy uhe (5.1)
can be memorized on peripheric devicedeliminating diasplacements.

6. Numerical application and conclusions

In order to prove its computational efficlency, the reduction
method has been applied to a large scale problem : a delta wing
analized experimentally and numerically by R.J.J. TABOREK (11)
and represented by the fig, 1,

Fig. 1. Idealization of the Delta WING




The whole structure 1s treated as a Kirchheff plate : a specilally
adapted econforming plate element has been generated which takes
into account the variahle distance between the upper and lower
sking, and the anisotropy introduced by the skin stiffners.

The loss of accuracy prodiced by the reduction method is evalua-
ted by use of the bound algorithm of T. KATO and G. TEMPLE. At an
other side, the comparison with the coimplete eigensolution furnishes
by the minimization techniques (3) give another verificarien,

The results cbtained prove that the reduction method can be con=
sldered as the most economical way to solve large eipenvalue pro-
blems.
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