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1. INTRODUCTION

The application of displacement methods to structural dynamic ana-
lysls leads to the general eigenvalue problem

Kx = mz Me 1.1)

for which a c¢lassical solution consists in building up the dynamic
flexibility matrix

p=kKtuy . (1.2)
and computing its eigen-values and =vectors
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x(l),x(z)...... ’ x(n)
by direct or iterative methods. For a finite element analysis, this
classical solution requires that K and M be assembled and K be inver-
ted. The order of these matrices 1s frequently so high that it is
impractical or prohibitive to compute the elgensolutions.

Two approaches have been used to solve practically the large
eigenvalue problems., The first one aims at an approximation preser-
ving the low frequency spectrum while reducing the order of the ei~
geavalue problem (6, 7, 8, 9).

The second consists in seeking the stationary peints of the Rayleigh
quotient

x"Kx
x " Hx
by minimization techniques (1, 4),

Ax) = {1.4)

More precisely, if we consider the restricted class of vectors x
which conaists only of vectors that are orthogonal to the first r-1
elgenvectors ¢

x'H x(s) a0 8 =1, 4,0 T=1 (1.5)




min

{;.(x) 7.:' - f

and this minimum is reached for x = 2(.)

X

When minimizing the Rayleigh quotient, it is no more necessary to
build up physically the structural matrices K and 1{, Indeed such an
algorithm requirea only the computations of the Rayleigh quorient
and its gradient vector at any point, This ¢an be performed by re-
reading the elementary matrices separately from tape or disk units
{1). .

Such an algorithm will be presented in this paper, and in order
to show its computatienal efficiency, it will be applied to a large
scale problem ; a delta winpg analysed numerically and exﬁerimentally
by Taborek (5).

2, MINIMIZATION OF THE RAYLEIGH QUOTIENT
2.1. Ressarch of the fundamental mode

The first techniques for m-'.inimizi.ng the Ray leizh quotient
have be confined to the "Steepest descent” method , and were
unsatisfactory because of the show convergence provided by this al-
porithm.

By using the well known Fletcher-Reeves method (2), W.W,
Bradbury and R, Fletcher (3) developped a moré powerful algorithm
which was appiied successfully by K,L, Fox and M,P. Kapur to struc-
tural eigenvalue problems (4). However, they gave no satisfactory
solution to the difficulty arising from the homogeneous form of the
Rayleigh quotient; the resulting deflation process for obtaining
higher modes could not be easily'devélopped.

In this paper, a new minimization algorithm will be presented which
relies upon the peneration of a set of H conjugate gradients, H re-
presenting the Hessian matrix of the local second order derivatives
computed at each iteration :
;oal
H= "Lgxilaxj } 2.1

Quadratic convergence is guaranteed in the neighbourhood of the ei-
gensolution, by analogy with the conjugate gradient method applicable
to quadratic functions,

It is important to note, at a practlcal point of view, that the
H conjugate directions can he computed without building up physically
the H matrix : indeed the orthogonalization process involves only

bilinear forms.




2.2, Convergence to higher modes

The usual marrix deflation process cannot be used if we
want to perserve the sparse nature of the structural matrices : the-
refore a gradient projection scheme will be used that constrains at
each iteration the minimization search to lie ln the subspace ortho-
gonal to the previously determined eigenvectors, By refering to Fox
and Kapur (4), it can be noted that the gradient projection scheme
1s considerably simplified by the use of a minimization algorithm
that does not need the definition of a metric.

2,3, Scaling transformation

The 111—condi:iqﬂhing of the minimization problem (1.4) being
directly related to that of fnverting.the stiffness matrix K, it fol-

lows that the accumulation of round-off errors and the eventual ins-
tabiliey of the conjugate gradient algorithm depends on the ellipeicity
of the potential energy %-K'Kx just as in statics (10, 11, 12).

An artificial source of ill-conditiofning is the use of such
elements that a-bad distribution of the stiffness occurs, or the de-
finition of such a typical length that the different types of displa-
cements {deflections, rotationas, curvatures) do not preaént the same
order of magnitude. '

o The numerical experiments have shown that the convergence of
the algorithm is very semsitive to the elljyticity of the stiffneass
macrix {1} : therefore a scaling transformation 1s discussed that re-
moves the artificfal ill-conditiening due to the cholee of physical

units,

3, NUMERICAL APPLICATION

In order to prove its computational effilciencv, ghe algorithm
has been applied to a large scale problem : the delta wing analysed
numerically and experimentally by R.J.J. Taborek (5). The structure
13 represented by the figure 1 of the abstract corresponding to (6).
The whole structure is treated as a Kirchhoff plate : 2 specially
adapted conforming plate element has been penerated which takes into
account the variable distance between the upper and lower skins, and

the anlsotrepy introduced by the skin stiffnesg,
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