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1. INTRODUCTIO_N

The application of displacement methods to structural dynamic ana-

lysis leads to the general eigenvalue problem

Kx - ..,2 m (1.1)
for which a classical solution consists in building up the dynamic

flexibility matrix

a a K-1 M , (1-2)
and computing its eigen-values and -vectors

2<2< < 2101‘ “2‘ ......mn

(1.3)

x(1),x(2),....u . X“)

by direct or iterative methods. For a finite element analysis, this

classical solution requires that K and M be assembled and K be invsx-

ted. The order of these matrices is frequently so high that it is

impractical or prohibitive to compute the eigensolutions.

Two approaches have been used to solve practically the large

eigenvalue problems. The first one aims at an approximation preser-

ving the low frequency spectrum while reducing the order of the ei-

genvalue problem (6, 7l 8. 9).

The second consists in seeking the stationary points of the Rayleigh

quotient

 

*(x) - (1.4)
x'Mx

by minimization techniques (1, 4).

More precisely. if we consider the restricted class of vectors x

which consists only of vectors that are orthogonal to the first r-l

eigenvectors :

x' M x( I 0 a - l. U. r-l (1.5)a)
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and this minimum is reached for x - x(r)

When minimizing the Rayleigh quotient, it is no more necessary to

build up physically the structural matrices K and H. indeed such an

algorithm requires only the computations of the Rayleigh quotient

and its gradient vector at any point. This can be performed by re-

reading the elementary matrices separately from tape or disk units

(1).

Such an algorithm will be presented in this paper, and in order

to show its computational efficiency, it will be applied to a large

scale problem : a delta wing analysed numerically and experimentally

by Taborek (5].

Z. EINIMIZATION OF THE RAYLEIGH QUOTIENT

2.1. Research of the fundamental mode

The first techniques for minimizing the Rq leigh quotient

have be confined to the "Steepest descent“ method , and were

unsatisfactory because of the show convergence provided by this al-

gorithm.

By using the well known Fletcher-Reeves method (2). WM.

Bradbury and R. Fletcher (3) developped a more powerful algorithm

which was applied successfully by K.L. Fox and H.P. Kapur to struc-

tural eigenvalue problems (A). However, they gave no satisfactory

solution to the difficulty arising from the homogeneous form of the

Rayleigh quotient; the resulting deflation process for obtaining

higher modes could not be easily developped.

In this paper, a new minimization algorithm will be presented which

relies upon the generation of a set of H conjugate gradients, H re-

presenting the Hessian matrix of the local second order derivatives

computed at each iteration :

r 2
H a E (2.1)

Quadratic convergence is guaranteed in the neighbourhood of the ei-

gensolution. by analogy with the conjugate gradient method applicable

to quadratic functions.

It is important to note, at a practical point of view, that the

H conjugate directions can be computed without building up physically

the M matrix : indeed the orthogonalization process involves only

bilinear forms.

 



 

2.2. Convergence to higher modes

The usual matrix deflation process cannot be used if we

want to perserve the sparse nature of the structural matrices : the-

refore a gradient projection scheme will be used that constrains at

each iteration the minimization search to lie in the subspace ortho-

gonal tn the previously determined eigenvectors. By refering to Fox

and Kapur (A). it can be noted that the gradient projection scheme

is considerably simplified by theuse of a minimization algorithm

that does not need the definition of a metric.

2.3. Scaling transformation

. The ill-conditiofiing of the minimization problem (1.10) being

directly related to that of inverting the stiffness matrix K, it fol-

lows that the accumulation of round—off errors and the eventual ins-

tability of the conjugate gradient algorithm depends on the ellipticity

of the potential energy % x'Kx justas in statics (10, ll, 12).

An artificial source of ill-conditiofning in the use of such

elements that a‘bad distribution of the stiffness occurs, or the de-

finition of such a typical length that the different types of displa-

cements (deflections, rotations, curvatures) do not present the same

order of magnitude. 1

‘ The numerical experiments have shown that the convergence of

the algorithm is very sensitive to the ellipticity of the stiffness

matrix (1) : therefore a scaling transformation is discussed that re-

moves the artificial ill-conditioning due to the choice of physical

units.

3 . NUMERICAL APPLICATION

In order to prove its computational efficiency, the algorithm

has been applied to a large scale problem : the delta wing analysed

numerically and experimentally by R.J.J. Taborek (5). The structure

is represented by thefigure 1 of the abstract corresponding to (E).

The whole structure is treated as a Kirchhoff plate : a specially

adapted conforming plate element has been generated which takes into

account the variable distance between the upper and lower skins, and

the anisotropy introduced by the skin stiffness.
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