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1. INTRODUCTION

“the interconversion of phone and sound is an integral part of language and its
underlying physiology." [1].

In our rescarch work we have been amempting 10 construct a continuous phonetic feature
description of speech signals in which segmentation is performed at equal time intervals (10
or 20ms) and where the value of each feature in an interval represents the probability of the
signal exhibiting a particular phonetic property (for a Justification, see [2]). We have
constructed this type of representation using perceptron networks that are trained to perform
non-linear mansformations of the signal [3]. We have previously demonstraed the urility of
the approach in a simple speaker-independent digit recognition task [4].

Qur hope is for an automated procedure for performing phonetic analysis on all speech signals
regardless of source. This could become an essential component of the computer-speech
systems of the future, in the same way as the equivalent human procedure is pant of human
language "physiology’ as Mattingly and Liberman suggest in the quote above.

Although such a universal procedure is long distant, we suggest that a start may be made on
simple sub-sets of speech signals:- single speakerrs, single environments, restricied lnguistic
form. If we can establish a scientific procedure for determining the phonetic wansforms for
these sub-sets independently, then in future we might consider meta-level procedures for
matching wansforms to speech signals in general,

In this paper, we make a first atiempt at the design and implementation of an experimental
paradigm for the determination of a set of phonetic ransforms from a database of speech
material. Section 2. below describes the expenimental paradigm in general terms, while section
3. describes our specific implementation for a monosyllabic word recogniton task, Sections 4.
and 5. give results for a simple vowel and consonant recognition subset.

2. PHONETIC TRANSFORM DERIVATION PARADIGM

The essential characieristics of the experimental paradigm are (i) the phonetic wansformation
is embedded in a phonological recognition task, and (ii) there is feedback from phonological
confusions to the design of the phonetic ansformation.
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Fig 1. Schematic of an experimental paradigm for the determination of a phonetic feature transform 10 represent

some speech material. The ouiput is the feature iransform specification raiher than the transform itself.
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The outputs of the paradigm are not the transforms themselves, since these will be speaker and
environment dependent, but rather the specifications for the transforms: the ‘fearure maps’.
These assume that we can annotate signals reliably and build transforms to specification using
some adaptive procedure, and so can define a transform according to the required relationship
berween annotated region and feature output. The featre maps say such things as: regions
annotated with *-m-’, "-n-’, *-1-* should have the VOICE feature high; or regions annotated with
'p-burst’ should have the ONSET feature high for 10ms. Fig 1. gives a schematic view of the
paradigm, with the feature maps seen on the right as output. There are three “inputs’ to the
paradigm:

1 Annotation Specification: a formal statement of the procedures 1o follow to associate
regions of the speech signal with labels, These labels need not be tied to phonological
units, and would normally be chosen to simplify the annotation process {to ensure
reliability of annotation). Since the annotations must later be used to identify regions
which have different phonetic properties, the annotations must at least be specific
enough to identfy different phonetic regions. The =snnotation specification for an
experiment would normally consist of a set of labels and a set of criteria for associating
those labels with regions of the signal. :

2 Speech Database: a collection of material chosen to represent some well-defined subset
of speech signals. The material must be reasonably homogeneous and self-consistent:
small vocabularies or single speakers or single environments. The paradigm aims to
produce a phenetic feature transformation appropriate for this material,

3) Phonological Analygis: the phonological task used to assess the effectiveness of the
phonetic ransformation requires some given phonological labels for the speech database
material. These labels are chosen o represent at minimum the phonological diversity
of the database material; they need not be a complete or parsimonious set for the
language.

The paradigm has 4 procedures with which it functions:

3] Annotation 1o Specification: given the speech material and the annotation specification
it'is also necessary to have a formal procedure by which one can be assured that the
material is annotated to specification. It is important that the annotations are used
reliably; if consistency is difficult, then the specification should be reconsidered.

2) Programmable Phoneric Transformation; a procedure for the construction of a ransform
from acoustic parameters to phonetic feature probabilides built from a feature map
specification. A number of patiern recognition tools could be considered here, and
feedback will be required that medifies the feature map to fit their capabilities.

3) Phonological Recognition: a recognition algorithm operating on the output of the
phonetic transforms and atiempting 1o select phonological labels for the speech material.
This is used 10 establish whether the phonetic transforms maintain sufficient information
for phonological choices 10 be made,

4) Emor Analysis: tools for taking the results of the recognition to aid the making of
improvements to the set of feature maps.
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3. EXPERIMENTAL METHOD

Our cwrent implementation of the experimental paradigm described above has the following
compaonents as inputs:

1)

2)

3

Annotation Specification: 125 labels have been selected 10 cover the acoustic-phonetic
events in the speech material” (below), these are simply relaed 10 a radidonal

“articulatory phonetic transcription, but pragmatically extended 10 ease annotation of

complex segments or smooth transitions {more information in [3]). An example section
of speech signal has also been identified for each label.

Speech Material: a 1000 monosyllabic-word vocabulary has been selected 10 cover a
large subset of syllable structure in English. 334 words have been arbitrarily chosen for
training, 333 words for evaluation and 333 words for final testing. Attempt has been
made to get maximum coverage out of dictionary words. The words were recorded by
one speaker (MH) in an office environment with a close-talking microphone and
automatic endpointing. Further details and recordings are available from the authors.
Phonological Analysis: each monosyllabic word was analysed as three segments: onset,
nucleus, coda; with the consonant 'clusters” treated as single phonological entities. Thus
the recognition task was 1o separately identify the initial consonant cluster, the vowel
and the final consonant cluster,

The current implementation of the procedures was as follows:

1)

2)

K}

4)

270

Annotation to Specification: consistency was assured (at the expense of accuracy of time
placement) by using a dynamic programming alignment procedure to align a specified
annotation label! sequence each to the utterances. The example annotated signal
segments were used as a source dictionary from which an antificially-created utterance
for the word could be aligned with the original.

Programmable Phonetic Transformation: we have continued 0 use the multi-layer
perceptron algorithm in a supervised training procedure [3]. Input to each network was
2 30 ms window of a 19-channel filterbank analysis of the speech, output was the
required feature value. For training, the feature map identified whether the network
should be high, low or indifferent 1o each of the possible annotated regions. There
was one feature map and one network per feature. The networks were trained to wy
1o achieve high fidelity between map and actual performance of the network, This
occasionally required changing the map to better fit the performance of the network.
Phonological Recognition: the output of the feature ransform networks was fed 1o a set
of Hidden Markov Models (HMMs), one per phonological unit. These were simple
chains of 5 or 7 states with no skips. Each observation vector was modelted with a set
of Gaussian disuibutions with diagonal covariance. “Initial segmentation and distributions
were set up using the procedure of Bridle & Sedgwick [5). HMMs were re-estimated
until there was a less than 1% change in model likelihoods.

Error Analysis: at each cycle in the experiment, a hypothesised set of feature maps were
specified and the wansformation trained accordingly on the training data.  Qurtputs of the
transformation again on the training data were then used to tain a set of phonological
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models (for the initial consonants or the vowels or the final consonants). These were
then tested on the evaluation data to give confusion matrix analyses. Two methods have
been used to investigate the confusion matrices: Information Transfer Analysis, where
phonological subsets are chosen to explore which features are currently being exploited;
and Muli-Dimensional Scaling, where phonological subsets are determined a posteriori.
Both techniques can lead to suggestions for modification of the feature set for a new

¢ycle in the experiment.

4. VOWEL EXPERIMENT

The vowel experiment to be described below gives a simple demonstration of the current
implementation of the paradigm. The vowel experiment uses the monophthong subset of the
database for the phonological recognition procedure. Thus the task is to define a feature set
which adequately discriminates the phonological labels: /i, I e, &, V, A, 0, Q, v and 3/

To obtain a reference level of performance, a set of HMMs were trained directly on the 19-
channel filterbank energies of the whole words. The recognition rate on the evalvation
database was 53%; the confusion matrix is shown in Fig 3a.
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Fig 2. Vowel feature performance.
The diameters of the circles represeni
the percentage of annotaied region
marked above threshold,
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The following were chosen as an initial a priori set
of features:

a)
b)

)

d

€)

NUC: high when the speech signal is pant of
the syllable nucleus, low otherwise. '
CLS: high when the vowel quality is for a -
"close” vowel, low when an 'open’ vowel,
don't care otherwise,

OPN: high when the vowel quality is for an
‘open’ vowel, low when a close’ vowel,
don’t care otherwise,

ERN: high when the vowel quality is for a
'front” vowel, low when a 'back’ vowel,
don’t care otherwise.

BAK: high when the vowel quality is for a
‘back’ vowel, low when a 'front” vowel,
don't care otherwise.

The selection of which parts of the signal represent
front/back or high/low vowel quality was made in
terms of the annotations, The networks were left 1o
decide how to label the half-open and half-front
vowels. The performance of the vowel quality

- features as a function of annotated region is shown

diagrammatically in the first 4 columns of Fig 2.
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The phonological unit recognition performance with these 5 features was 44%. The confusion
matrix for this configuration is shown in Fig 3b. The most obvious conclusions o be drawn
from an analysis of the confusions is the need for further separation between the open back
vowels. Thus a 6th vowel feature was trained:

) OVA: high when the vowel quality was /Of or /Y, low when /A/ or /V/, don't care
otherwise. :

The performance of this feature is shown diagrammatically in the 5th column of Fig 2. The

phonological performance with these 6 features rose to 60%, slightly higher than the reference.
The confusion matrix is shown in Fig 3c.

5. CONSONANT EXPERIMENT

This experiment Jooked at the monosyllabic words with single initial consonants, i.e. from the
set /0, b, d g p.t, k. mn, L, r,w,j,dZ 15, £,5 8, T, v, z D and /. The pattern vectors
for testing were generated from the beginning of the recording for each word to half way
through the vowel (as determined by the annotation alignment procedure).

Reference performance was again obtained by training a set of HMMs directly on the vocoder
energies. The result was 44% correct from the 23 phonological categories. To simplify the
analysis, the tokens and models were pooled into the broader manner categories: 0, VSTOP,
UVSTOP, VFRIC, UVFRIC, NASAL and LIQUID. The broad category recognition rate was
67%; confusion matrix in Fig 4a.

The initial set of features for the consonam recognition task was:

a) ENV: Amplitude envelope feature. The MLP configuration to implement this feature
was constructed by hand, ‘

b) NUC: high when the speech signal is part of the syllable nucleus, low otherwise.

¢} VOL: high when the speech signal has periodic excitarion, low otherwise.

d) ERC: high when the signal has aperiodic excitation, low otherwise.

e) NAS: high when the signal is nasalised, low for other voiced consonants, don't care
otherwise,

Recognition rate on the 23 phonological categories was very poor; 17%, however these features
provide no place information, so a fairer-comparison would be with the 7 broad categories,
with a recognition rate of 57%; the confusion matrix is shown in Fig 4b. :

An analysis of the broad category confusions suggested that the primary sources of error were

(i) liquids being mis-recognised as voiced fricatives and nasals, and (ii) voiced stops being mis-
recognised as unvoiced fricatives, Two additional features were thus added:
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1] LIQ: high when signal is syllable initial 1-, r-, w-, j-; low for inital m- and n-, and
voiced fricatives; don't care otherwise.
B BUR: high for 10ms after a stop burst, low for voiceless fricatives, don't care otherwise.

With these 7 features, recognition rate went up to 20% for the 23 phonological calegories and
up to 65% for the broad categories, stll slightly worse than the reference; confusion mamix in
Fig 4c.

6. SUMMARY

In this paper we have outlined an experimental paradigm by which a phonetic fearure
specification may be derived from a speech database which may be used to develop a phonetic -
ransform of speech signals 1o accomplish some phonological recognition task. We have also
shown, in two simple experiments, that embedding the design of the wansform in a recognition
task allows us to hypothesize and test feature specifications, leading to an increase in
performance. Whilst a system for the recognition of the vowels or initial consonants of
isolated words may be of limited use, we hope the feature specifications will uldimately have
more general importance.
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Fig 4a Consonant Reference
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