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.1 mnucnos

The performance of misting speech recognition systems which are designed to operated in low noise
background noise environments have been known to degrade quite significantly with increasing
noise levels [6]. Among the many techniques proposed for noise robustness in recognisers, those
based on adapting speech models trained in one environment to the ambient conditions have shown
much success. The Hidden Markov Model (rm) decomposition reoognitionlll and the model
oomhinationlsl technique have illumted good performances in rathermeme conditions. The Klatt
noise maskingfi] is another algorithm of this type.

Acoustic ambient noise is usually considered to be additive. The sampled signal is the sum of the
acoustic speech signal and the acoustic ambient signal. The frontrend of most speech recognisers
perform a short term spectrum analysis on the sampled signal as a first step. Estimates ofthe signal
energy in various frequency bands are calculated in dB or equivalent energy level measures. As~
suming that the moss correlation term between the speech signal and the ambient noise signal is
negligible compared with the autoosrrelation terms, the ergy estimate may be elpressed as

0.. = 20logm(102”/20+ION/20) (1)
e mulrmyu), (2)

whee 0.. denotes the output of channel k at time I. 2.. and 11:. denote the unobservable output of
channel k of speech and noise respectively, if the otba were not present. A plot of the function is
shown as the continuous line in fig. 1.
One good approximation to this Motion is the max function described by long dasha in the figure.

The max function implies that the observed output is the largest of the speech and noise energy
estimates. This is why many hodel adapufion to noise' techniques have also been described as
‘noise making.
The decomposition recognition [1] is an extension of the Viterbi HMM recognition paradigm to

incorporate the noise contamination Process. The noisy speech frames are explained as a combination
of the speech and the noise frames by a suitable composing function dependent upon the recogniser-
front-end preprocessing. The model combinan'on technique [3] suitably corrects the speech models
for the ambient noise condih'ons for use in a speech recogniser- which otherwise operates in low noise
conditions. It assume a sepsis-um transformation frontrend and combines speech and noise model
estimates to produce noisy speech models. Though prinu‘pally similar to decomposition recognition,
the speech models are adjusted for the conditions instead of modifying the recognin'on algorithm.
Both techniques assume that the speech signal is not directly affected and do not account for the well
known lambard' effect.
The choice of the front-end prepmoessingis also an issue in such noise robust recognition schemes.

Although the cepstrum transformation is known to produce better discriminant vectors for speech in
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Figure 1: The solid line shows the sttual contour. the long dashed line shows the max function and

the short dashed one shows the 3-piese approximation.

quiet conditions, it is not known whether the same is true in high levels of noise. The model combi-

nation technique is applicable to the spectral energy as well as the oepetnun frontrends. The mm

decomposition however is limited to spectral energy front-ends owing to the difliculty in calculating

complicated integrals with the ospstrum hunt-end.

' This article mainly focuses on the scope of the various model adaptation techniques. The perfor-

mances of the HMM decomposition recognition and the model eomhination technique are evaluated

in a digit recognition experiment. A number pie-recorded noise samples are mixed with clean speech

samples for testing the recognizers. These performances are compared with baseline results. The

scope of the 'adaptation to noise' techniques in general are also assessed by considering the noise

making of frames corresponding to each phoneme.

2 m DECOMPOSITION: MAXIJVIUMWOODRECOGNITION

TheWdeoompmition remgnition is the derivation of the maximum likelihood recognition within

the demmposition [2]. Representing the ambient noise process also as an mm. it calculates the

most likely state sequenoes among both the speech states and the noise states given the contaminated

speech data. The algorithm is described in [1] and the general framework in [2].

let I() be the equivalent composing function ul's speech frame 2. and a noise frame 11. to produce

the observed frame. 0. = I(z.. m). The Viterhi scoring function is derived for the composed speech-

noise states as. with the usual notations,

0u+i(i,k) = max MUJlalfiflusuloni) (3)
ini
nu:
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where the obssrvation probability funetium via joint state

Bum.) = bl.-(z)b2.(y). (4)
where C. s [(1.14) = 0.. In general the noise mudel may oonsist of many states but for stationary
background noises me is suflicient. ' _
The fivntend ofthe speech recognise employs a 27 channel filterhank which produces log energy

outputs in dB every 10mm The composition function is therd'ore as stated in eqn. 1. In erder to
reduce computations apprnfimah'uns of this function are used in the recognition system. Varga and
Moon [1] use the max funzu‘sn as an Appmximla’nn to f(). The max function deviates inn: the
actual function by about 42d]! at the break paint as illustrated in Fig. 1A This is redumd to about
12418 with a three piece appmximstion as illustrated in fig 1. in short dashed Lines.

2.1 The max approximation

Themsln'ng function approximation is a popular spproximafion far the combination ofspeech frames
and noise fumes. '

[(2.11) E mummy). (5)
The joint. ohservsh'on pmbability fizncta'nn fur a pair ofgaussian states with diagonal «to-variances is
theréore

K
{M'ch) = H[9(flih0n.0u)C(Iljhanflm)+ (OI-1.0.1.0”)9(Iljk,djs,0..)]_ (6)

k=l

where 90 and 90 denote the gaussian and the error functions respectively.

2.2 The three piece approximation

The three piece apprsn'mah'on function is a denser fit to the actual combination function. It is defined
as

: 22y+6

f(=yv)E 1% y—6<25y+6 (7)
' y y>r+6

Thejoint Observation probahility function is therefore

li‘
B;,(0,) = H[901mm,Oulewjhvan—fiHswimwear-6)9(ujw7jh0u)

k=l

+£(uu. + [fit-“il- + fljI.Olk)-[‘(M;jha:jhotk) — 5(flijl-aijkvolIP-6H] (8)
where

173.11.} + 03.40” - 11,1)
'.‘ 2

“it + ’11-

 

(9)F er. II

1 1
“in "It

10qt m ( )
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3 CEPSTRUM MODE. COMBINATION

Given the speech and noise models with cepstrum coefidents, the distribufions are suitably combined

in the filtenbank output energy domain, and then transformed back to the oepstrum domain to obtain

the corrected models. [8]. The main attraction ofthis method is the use of cepstrum data which are

known made better disa-iminah'on for clean speech. The method is outlined as follows.

1. If the speech models are based on cepstrum data apply the inverse oepstrum Random on both

the mean vector and the covariance matrix.

2. Compute the mean vector and the covariance matrix of the lognormal distribution with appro-

priate scaling. These estimates will be in the absolute enery domain.

3. Do steps 1 and 2 on the noise model.

4. Add the two esu'mntes together with appropriate gains il'neeessary.

5. Again assmning a good lognormal fit to the mixed distribution. calculate the mean vector and

the covariance matrix for the log energy domain.

6., Apply cepstrum transformation is required to ohmin cepstrum distributions ofnoisy speech. Use

the diagonal covariances only if desired.

AM

The recognition performances were obtained for the HMM decomposition with the masking func‘

flea and the three piece approximations. The model combination algorithm was also tested in the

following cases:

1. Cepstxum speech models and eepstrum noise models.

2. Cepstrum speech models and filterbank noise models.

3. Filterbank speech models with diagonal covariances and filterbank noise models.

It seems appropriate to use filterbank noise models as there is no good reason to make cepstrum

estimates of the noise. limos the two cases are evaluated. The third combination is also tested to

armpare directly the costin performance which may be associated with theapproximations.

A digit remgnition task was performed using speaker independent models. The background noises

used in the experiment were pink. {16 aircrafi and ambient noise in a car production factory hall. All

thee were obtained from the NATO-R5610 Noise database. The RSRE-PINSS database was used

for speaker independent data in which each subject spoke exactly 19 quadruplet pin numbers in quiet

conditions. The noisy data was created artificially by mixing speech and noise at prespedfied SNR

levels.
The speech and noise models were trained separately. The train set for speaker independent models

consisted of the first 80 spukers in PINES). Single state models were trained for all noises.

The speaker indepmdtrecognition was performed on the next 120 Speakers in Pm89. The sound

levels were measured in accordance with the 5V6 speech vnlhnetm- which calculates rms energy of

active speech. The measurement bandwidth was IOU-Is.

m Proc.l.0.A. Vol 14 Part a (1992)

  



 

Proceedings of the Institute of Acoustics

Model adaptations for noisy speech

5 RESULTS

The figim illustrate the peluentage aocuraq of recognition. the pink noise baseline results were
aloulated using a front-end which obtained 8 oepstrum and 8 delta oepstnnn coeficients. A state
variance floor of2.5dB was imposed for all models.   x— _ _xUnmodiiied

.— _ _+ Noise trained

+_ ..... ..+ F8 speech A: noise, model comb.

+._ ._+MFCC speech FB noise. model comb.

4. _ _ _ +MFCC speech a: noise, model comb.

+ ........ ..+rnox opx.. Dec,

4—..3pc. opx., Dec.

. '

Q 20 15 1o 5 o —5—1o-15—2o
SNR/dB

Figure 2: Becognih'on in Pink Noise.

6 ESTIMATED MASKING OF PHONES

Assuming the noise masking model. it is possible to calculate how much of the speech patterns are
masked by a particular noise at various levels. This data gives a useful insight into the difficulty
assoa'ated with recognising words in noise.
For each phone in spoken English the expected number of times each channel output will be not

masked by noise may be calculated. The analysis is done with pink noise as its long term spectrum
resembles closely those of most real noises. The phones are gathered from the RSRE ARM database.
The expected total number ofSRUbank channels which will contain speech and not noise at various
levels is as shown in table 1. The first 812ka channel has been left out as it includes the DC
output. The phoneme notations comply with the SAMPA recommendations.
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Figure 3: Recognifion in FIG airmfl. Noise.
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Figure 4: Recagnicion in Car Produttion Hall Noise.
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Phone 20dB 15d.B lOdB 5dB OdB -5dB -10dB -15d.B
' 25.5 22.5 15.9 9.3 4.0 0.4 0.0 0.0

25.9 25.0 21.1 13.6 5.0 0.6 0.0 0.0
26.0 25.3 22.1 17.6 9.8 2.1 0.1 0.0
26.0 25.2 22.0 17.9 11.2 2.6 0.1 0.0
26.0 25.2 21.8 17.5 11.4 4.7 0.4 0.0
26.0 24.7 20.0 13.7 7.4 2.5 0.1 0.0
25.4 21.2 14.4 8.4 5.2 1.5 0.0 0.0
26.0 25.3 22.7 15.6 6.8 1.9 0.2 0.0
25.1 20.9 15.2 9.1 3.1 0.4 0.0 0.0
26.0 25.6 22.7 18.2 10.5 2.4 0.1 0.0
26.0 24.4 20.3 14.1 6.7 1.3 0.0 0.0
25.6 22.4 16.6 9.4 2.7 0.2 0.0 0.0
26.0 25.6 21.9 16.9 9.9 2.2 0.1 0.0
26.0 25.5 22.0 18.1 11.1 3.0 0.1 0.0
26.0 23.7 18.1 10.4 3.6 0.4 0.0 0.0
26.0 25.0 21.4 17.0 10.7 2.5 0.1 0.0
25.4 22.0 16.8 11.5 5.5 1.0 0.0 0.0
26.0 24.9 21.9 18.3 10.8 2.4 0.1 0.0
26.0 25.5 22.2 17.9 11.3 2.8 0.1 0.0
25.8 23.5 18.1 11.7 5.4 1.0 0.0 0.0
25.9 23.5 19.0 15.2 8.1 1.5 0.0 0.0
25.1 20.5 15.0 10.6 6.0 1.5 0.0 0.0
26.0 25.4 20.3 14.0 6.6 1.0 0.0 0.0
25.6 20.9 13.9 6.2 1.9 0.2 0.0 0.0
24.9 18.8 9.6 3.0 0.7 0.0 0.0 0.0
25.4 20.6 12.8 5.2 1.3 0.0 0.0 0.0
24.5 18.0 7.7 0.8 0.0 0.0 0.0 0.0
25.1 20.1 13.5 7.9 3.3 0.5 0.0 0.0
25.3 21.8 16.0 6.7 0.8 0.0 0.0 0.0
23.9 17.2 8.5 1.8 0.1 0.0 0.0 0.0
24.8 19.5 13.0 5.4 0.7 0.0 0.0 0.0
25.9 24.5 20.3 14.0 5.3 0.7 0.0 0.0
25.9 24.7 18.0 8.3 2.4 0.1 0.0 0.0
25.7 23.9 15.9 6.1 1.1 0.0 0.0 0.0
25.7 24.0 19.1 10.1 3.9 0.3 0.0 0.0
25.9 24.0 18.1 10.8 2.9 02 0.0 0.0
25.8 24.4 17.8 3.6 0.0 0.0 0.0 0.0
26.0 24.6 19.3 10.3 3.3 02 0.0 0.0
26.0 25.6 19.4 5.0 0.2 0.0 0.0 0.0
26.0 25.6 19.3 12.3 6.6 1.5 0.0 0.0
26.0 24.5 19.0 9.7 2.7 02 0.0 0.0
26.0 25.8 21.1 11.1 3.8 0.3 0.0 0.0
25.4 22.1 12.8 5.1 1.2 0.1 0.0 0.0
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Table l: Masking of phones in theARM database.
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'1 DISCUSSION

’lhble 1 suggests that below 0 SNR recognisers have to depend almost entirely on the vowels for

disa-imination as many of the consonants are completely mashed out. The diy't recognition results

obtained indicate a more optimistic picture. probably based on this explanation.

Though the HMM decompositions appears to ofi'er better performance for pink noise, the difference

disappears when using real background noises. The 3 piece approximation appears to be slightly

better than the masking function for HMM decomposition.
The difl'erence between using filterbank models and cepstrum models for noise appears to be neg-

ligible. Both estimates seem In be accurate enough. The combination of filter-bank models seem to

0321' the poorest of the results thereby illustrating the cost of the approximations used in the com-

hination which are noticeable when comparing them with the HMM decomposition results. This is

also observable when comparing the cepstrum combined models with the nuisa trained baseline re-

sults. It is interesting to note that the baseline models could not be trained at -10dB SNR. Though

only stationary noises were used in the experiment these techniques are applicable to non-stah‘onary

noisu as well.

References

[1] Var-gs A. P., Moore R. K, Hidden Markov model decomposition of speech and noise, Proc.

ICASSPQO. mus-848. Albuquerque 1990.

[2] Kadirhamanathan M.. Vargs A. P., Simultaneous model re-estimolion fiom contaminated dots

by 'composcd’hiddenMarkov modelling, Pros. IGASSPsl, pp729-734, Toronto 1991.

[3] Gales M. J. R, Young S. J..An improved approach to the hidden Markov model decompositian',

Proc. ICASSm. pp729-734, San Fransisco 1992.

[4] Klatt D. H.,A digitalfilm bankfor spectral mulching, Pros. ICASSP'IG, pp573-5'IG, Philadelphia

1976.

[5) Dsutr-ich B. A, Rabiuer L. R, Martin '1‘. 3., On the efiects ofvun'ingfilta' bankMm on

isolohd word recognition, IEEE 'h'ans. on ASSP. ASSP32, pp 793-806.

© Crown Copyright 1992

m Proc.l.0A. Vol 14 Part a (1992)

 


