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1 INTRODUCTION

The performance of existing spesch recognition systems which are designed to operated in low ncise
background noise environments have been known to degrade quite significantly with increasing
noise levels [6]. Among the many techniques proposed for noise robustness in recognisers, those
based an adapting speech models trained in one environment to the ambient conditions have shown
much success. The Hidden Markov Model (HMM)} decomposition recognition[1] and the model
combination[3] technique have illustrated good performances in rather extreme conditions, The Klatt
noise masking{4] is another algorithm of this type.

Aroustic ambient noise is usually considered to be additive, The sampled signal is the sum of the
acoustic speech mignal and the acoustic ambient signal. The front-end of most speech recognigera
perform a short term spectrum analysis on the sampled signal as a first step. Estimates of the signal
energy in various frequency bands are calculated in dB or equivalent energy level measures. As-
suming that the cross correlation term between the speech signal and the ambient noise signal is
negligible compared with the autocorrelation terms, the energy estimate may be expressed as

Ou = 20logyp(10%1#/20 4 1obee /20y (1)
= mu(?lh!hi), )

where O:: denotes the cutput of channel k at time f. z.; and y,; denote the unobservahle output of
channel k of speech and noise respectively, if the other were not present. A plot of the function is
shown a8 the continuous line in fig. 1.

One good approximation to this function is the max function described by long dashes in the figare.
The max function implies that the observed output is the largest of the speech and noise energy
estimates. This is why many ‘model adaptation to noise’ techniques have also been described as
‘noige masking’.

The decompaosition recognition [1] is an extension of the Viterbi HMM recognition paradigm to
incorporate the noise contamination Process. The noisy speech frames are explained as a combination
of the speech and the noise frames by a suitable composing function dependent upon the recogniser
front-end preprocessing. The model combination technique (3] suitably corrects the speech models
for the ambient noise conditions for use in a speech recogniser which otherwise cperates in low noise
conditions. It aseumes a cepstrum transformation front-end and combines speech and noise model
estimates to produce noisy epeech models. Though principally similar to decomposition recognition,
the speech models are adjusted for the conditions instead of modifying the recognition algorithm.
Both techniques assume that the speech signal is not directly affected and do not acoount for the well
known Lombard’ effect,

The choice of the front-end preprocessing is also an issue in such neise robust recognition schemes.
Although the cepstrum transformation is known to produce better discriminant vectors for speech in
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Figure 1: The solid line shows the actual contour, the long dashed line showa the max functicn and
the short dashed one shows the 3-piece approximation.

quiet conditions, it ie not known whether the same is true in high levels of noise. The model combi-
nation technique is applicable to the spectral energy as well as the cepstrum front-ends. The HMM
decomposition however is limited to spectral energy front-ends owing to the difficulty in caleulating
complicated integrals with the cepstrum front-end. .

" Thig article mainly focuses on the scope of the various model adaptation techniques. The perfor-
mances of the HMM decomposition recognition and the mede] combination technique are evaluated
in a digit recognition experiment. A number pre-recorded noise samples are mixed with clean speech
samples for testing the recognizers. These performances are compared with baseline resulta. The
scope of the ‘adaptation to noise’ techniques in general are also assessed by considering the noise
masking of frames corresponding to each phoneme. _

2 HMM DECOMPOSITION: MAXIMUM LIKELIHOOD RECOGNITION

The HMM decomposition recognition is the derivation of the maximum likelihood recognition within
the decomposition [2). Representing the ambient noise process also as an HMM, it calculates the
most likely state sequences among both the speech states and the ncise states given the contaminated
speech data. The algorithm is described in (1) and the general framework in [2].

Let f{) be the equivalent composing function of a speech frame z, and a noise frame y: to produce
the observed frame, O, = f(z;, ). The Viterbi scoring function is derived for the composed speech-
noise states as, with the usual notations,

Brgali k) = ,mgﬁ. (5, l)al,'.'ﬂuﬁit(owl) (3)
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where the observation probability function of a joint state
b4(0) = ﬁ BL(2)b2(y), (1)

where C; = f(r,y) = Oy. In general the noise model may consist of many states but for stationary
background noises one ig sufficient. . .

The front-end of the speech recogniser employs a 27 channe! filterbank which produces log energy
outputs in dB every 10ms. The composition function is therefore as stated in eqn. 1. In order to
reduce computations approximations of this function are vsed in the recognition system. Varga and
Moore [1] use the max function as an approximation to f(). The max fanction deviates from the
actual function by about 4.2dB at the break point as illustrated in Fig. 1. This is reduced to about
1.2dB with a three piece approximation as illustrated in fig. 1. in short dashed lines.

2.1 The max approximation

The masking function approximation is a popular approximation for the combination of speech frames
and noise frames. :

Hz, ) = max{z,y). {5)
The joint obzervation probability function for a pair of gaussian states with diagenal co-variances is
therefore
~ K
by () = H lg(ﬂu. %ix, Ot) e(pje, 050, Ont) + e(pin. 0:x, Out) glptin, o5, Ou}] . (6)
k=1

where g(} and e() denote the gaussian and the error functions respectively.

2,2 The thres piece approximation

The three piece approximation function is a closer fit to the actual combination function. It is defined
as

x x2y+6
flz,p= ii?;ﬁ y-b<z<y+6 (7)
' ¥ y>z46

The joint cbservation probability function is therefore

K "
H [9(#.‘#. Fir: Ounde(utjn, 050, O —8) + €litin, oir. 01— 6) glpejy. ¢, Ons)

bij(0:) =
k=1
+olee + ik 0ir + 050, On ). [e(pfie. o0x, Ont) — elprly 054, O —6)]] (8)
where . .
. o stie + 05 (O = prjn)
fTHTY P (%)
it oy
PR
-2 ik i
L = 0
LA At oh (10)
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3 CEPSTRUM MODEL COMBINATION

Given the speech and naise models with cepstrum coefficients, the distributions are suitably combined
in the filter-bank output energy domain, and then transformed back to the cepstrum domain to obtain
the corrected models, [8]. The main attraction of this methed is the use of cepstrum data which are
known to offer better discrimination for clean speech. The method is outlined as follows.

1. If the speech models are based on cepstrum data apply the inverse cepstrum transform on both
the mean vector and the covariance matrix.

2. Compute the mean vector and the covariance matrix of the lognormal distribution with appro-
priate acaling. These estimates will be in the absolute energy domain.

3. Do steps 1 and 2 on the noise model.
4. Add the two estimates together with appropriate gains if necessary.

5. Again assuming a good lognormal fit to the mixed distribution, calculate the mean vector and
the covariance matrix for the log energy domain.

6.. Apply cepatrum transformation is required to obtain cepstrum distributions of noisy speech. Use
the diagonal covariances only if desired.

4 EXPERIMENT

The recognition performances were obtained for the HMM decomposition with the masking func-
tion and the three piece approximations. The model combination algerithm was also tested in the
following cases:

1. Cepstrum speech models and cepstrum noise models.
2. Cepstrum speech models and filterbank noise models.
3. Filterbank speech models with dingonal covariances and filterbank noise models.

It seems appropriate to use filterbank noise models as there is no good reason to make cepstrum
estimates of the noise. Hence the two cases are evaluated. The third combination is also tested to
compare directly the cost in performance which may be associated with the approximations.

A digit recognition task was performed nsing speaker independent models. The background noises
vzed in the experiment were pink, {16 aircraft and ambient noise in a car production factory hall. All
these were obtained from the NATO-RSG10 Noise database. The RSRE-PINSY database was used
for speaker independent data in which each subject spoke exactly 19 quadruplet pin numbers in quiet
conditiona. The noisy data was created artificially by mixing speech and noise at prespecified SNR
levels.

The speech and naise models were trained separately. The train set for speaker independent models
congisted of the first 80 speakers in PIN8S. Single state modela were trained for all noises.

The speaker independent recognition waa performed on the next 120 Speakers in PIN89. The sound
levels were measured in accordance with the SV6 speech voltmeter which calculates rms energy of
active speech. The measurement bandwidth was 10kHz.
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§ RESULTS

The figures illustrate the percentage accuracy of recognition. The pink noise baseline results were
calculated using a front-end which obtained 8 cepstrum and 8 delta cepstrum coefficients. A state
variance floor of 2.5dB was imposed for all models.
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Figure 2: Recognition in Pink Noise,

6 ESTIMATED_MASKING OF PHONES

Assuming the noise masking model, it is possible to calenlate how much of the speech patterns are
masked by a particular noise at various levels. This data gives a useful ingsight into the difficulty
associated with recognising words in noize.

For each phone in spoken English the expected number of times each channel output will be not
masked by ncise may be calculated. The analysis is done with pink neise as its long term spectrum
resembles closely those of most real noises. The phones are gathered from the RSRE ARM databace.
The expected total number of SRUbank channels which will contain speech and not noise at various
levels is as shown in table 1. The first SRUbank channel has been left out as it includes the DC
output. The phoneme notations comply with the SAMPA recommendations.
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Figure 3: Recognition in F16 aircraft Noise.
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Figure 4: Recognition in Car Production Hall Noise.
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Phone 20dB 15dB 10dB 5dB OdB -5dB -10dB -15dB
i 2556 225 159 93 40 04 0.0 0.0
H 259 250 211 136 50 08 0.0 0.0
E 260 253 221 178 98 21 01 0.0
{ 260 252 220 179 112 28 0.1 0.0
A 260 252 218 175 114 49 04 0.0
Q 260 247 200 137 74 235 0.1 0.0
0 254 212 144 84 5.2 15 0.0 0.0
u 260 253 227 156 68 19 02 0.0
u 251 209 152 91 31 04 0.0 0.0
3 260 256 227 182 105 24 0.1 0.0
v 260 244 203 141 87 13 0.0 0.0
@ 256 224 166 94 27 02 0.0 0.0
el 260 256 219 189 99 22 01 0.0
al 260 256 220 181 111 30 0.1 0.0
01 260 237 181 104 36 04 0.0 0.0
al 260 250 214 170 107 25 0.1 0.0
U 254 220 168 115 55 10 0.0 0.0
1@ 260 249 219 183 108 24 01 0.0
@ 260 255 222 179 113 28 01 0.0
I 258 235 181 1.7 B4 10 0.0 0.0
r 259 236 190 152 81 15 0.0 0.0
w 251 2056 150 106 6.0 1.5 0.0 0.0
J 260 254 203 140 66 10 00 0.0
m 256 209 139 62 19 02 0.0 0.0
n 249 183 96 30 07 00 0.0 0.0
N 264 206 128 52 13 00 0.0 0.0
p 245 18.0 7.7 08 00 00 0.0 0.0
b 251 201 135 79 33 05 0.0 0.0
t 253 218 160 87 08 00 0.0 0.0
d 239 172 85 18 01 00 0.0 0.0
k 248 195 130 54 07 o090 Q.0 0.0
g 259 245 203 140 53 0.7 0.0 0.0
8 259 247 180 83 24 01 00 0.0
z 257 239 159 61 11 00 0.0 0.0
3 257 240 191 101 39 03 0.0 0.0
Z 259 240 181 108 2% (02 0.0 0.0
f 268 244 178 36 00 00 0.0 0.0
v 260 246 193 103 33 02 0.0 0.0
T 260 256 194 50 02 090 0.0 0.0
D 260 256 193 123 68 15 0.0 0.0
h 260 245 190 97 27 02 0.0 0.0
tS 260 258 211 111 38 03 00 0.0
dz 254 221 128 51 12 Q1 0.0 0.0
Table 1: Masking of phones in the ARM database.
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7 DISCUSSION

Table 1 suggesta that below 0 SNR recognisers have to depend almost entirely on the vowels for
discrimination a8 many of the consonants are completely masked out. The digit recognition results
obtained indicate a more optimistic picture, probably based on this explanation.

Though the HMM decompositions appears to offer better performance for pink noise, the difference
disappears when using real background noises. The 3 piete approximation appears to be slightly
better than the masking function for HMM decompogition.

The difference between using filterbank models and cepstrum models for noise appears to be neg-
ligible. Both estimates seem to be accurate enocugh. The combination of filterbank models seem to
offer the poorest of the results thereby illustrating the cost of the epproximations used in the com-
bination which are noticeable when comparing them with the HMM decomposition results. This is
nlso observable when comparing the cepstrum combined models with the noise trained baseline re-
sults. It is interesting to note that the baseline models could not be trained at -10dB SNR. Though
only stationary noises were used in the experiment these techniques are applicable to non-stationary
noises as well.
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