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The advanced open rotor is a novel aeronautical engine which promises significant reductions in fuel burn 
relative to current generation turbofan engines. Thrust is produced by two contra-rotating open rotors which 
must be carefully designed in order to ensure that the noise produced by these engines is an acceptable level. 
A particularly important source of noise produced by an advanced open rotor engine is the tones produced 
when the wakes from the upstream rotor impinge on the downstream rotor blades. This paper will present a 
simple analytical model for predicting this tonal noise. Asymptotic analysis is then used to simplify the ex-
pressions and deduce how changes in rotor geometry can be used to reduce noise levels.   
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1. Introduction 
An advanced open rotor engine is a novel aeronautical propulsor which offers significant reduc-

tions in fuel burn relative to a current generation turbofan engine. Thrust is produced by the two 
contra-rotating coaxial ‘open rotors’. The downstream rotor is used to recover the swirl from the wake 
of the upstream rotor which improves the efficiency relative to a single rotor engine. The noise spec-
trum produced by the open rotor consists of a significant broadband level in addition to a multitude 
of tones. The tones produced by the rotor blades include the usual ‘rotor-alone’ tones which occur at 
integer multiples of the blade passing frequency of each rotor as well as ‘interaction’ tones produced 
by the interaction of the rotor blades with the unsteady flow-field from the adjacent rotor. Rotor-alone 
tones are primarily caused by the steady loading and thickness of the rotor blades. Interaction tones 
are believed to be primarily produced by the periodic unsteady loading on the rotor blades.  

   This paper contains a description of a relatively straightforward analytical method for predict-
ing the tones produced by the interaction of the viscous wakes from the upstream rotor with the 
downstream rotor. Asymptotic theory is then applied to these equations and the resulting expressions 
are used to show how the ‘sweep’ of the downstream rotor blades can be used to reduce the level of 
these tones. 

2. Analytical noise prediction of interaction tone noise 
A number of methods for predicting open rotor noise are available and a summary of these can be 

found in the review paper by the author (Kingan (2014)) which the reader is referred to for further 
details. As one might expect these methods involve varying degrees of complexity and computational 
time and range from high fidelity (but time intensive) CFD methods to simple (but quick) analytical 
methods.  For the purposes of analytical modelling, the unsteady flow-field produced by each rotor 
blade can be decomposed into (1) the viscous wake, (2) the tip-vortex, and (3) the bound potential 
field. The velocity perturbation associated with each of these fields can then be decomposed into a 
Fourier series of ‘harmonic convected gusts’ by making use of the periodicity of the problem in the 
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azimuthal coordinate (the angle through which the blade rotates). The unsteady loading on or ‘re-
sponse’ of the adjacent rotor’s blades to the each of these gusts is then calculated using well-known 
‘blade response functions’. The far-field noise radiation can be predicted from the calculated unsteady 
loading using the analytic ‘frequency domain’ expressions of Hanson (1985) or Parry (1988). 

2.1 Analytic method for predicting viscous wake interaction tones 
In this section we develop a model for calculating the tonal noise produced by the unsteady loading 

on the downstream rotor blades due to their interaction with the viscous wakes of the upstream rotor. 
This model is a simple extension of the model developed by Parry (1988). For the analysis presented 
in this paper, it will be convenient to introduce a cylindrical coordinate system, {𝑥𝑥, 𝑟𝑟,𝜙𝜙}, where 𝑥𝑥 is 
the axial coordinate which is collinear with the propeller axis, 𝑟𝑟 is the radial coordinate and 𝜙𝜙 is the 
azimuthal angle. The rotors are immersed in a uniform airflow with Mach number 𝑀𝑀𝑥𝑥 in the negative 
𝑥𝑥-direction relative to the advanced open rotor and the air has ambient density 𝜌𝜌0 and speed of sound 
𝑐𝑐0. The upstream and downstream rotors rotate in the negative and positive 𝜙𝜙-directions at rotational 
speeds Ω1 and Ω2 respectively. The pitch-change axis of the reference blades on the front and rear 
rotors are located at 𝜙𝜙 = 0 rad at time 𝜏𝜏 = 0 s and are separated by a distance 𝑔𝑔 in the axial direction. 
Also note that the convention adopted in this paper will be that the subscripts 1 and 2 denote param-
eters associated with the front and rear rotors. The blades of both rotors have chord 𝑐𝑐(𝑟𝑟), sweep 𝑠𝑠(𝑟𝑟), 
lean 𝑙𝑙(𝑟𝑟) and sectional drag coefficient 𝐶𝐶𝐷𝐷(𝑟𝑟) and both rotors have 𝐵𝐵 blades and have an equal diam-
eter which is denoted 𝐷𝐷. 

The unsteady loading on the downstream rotor blades at a given radial location is calculated using 
an equivalent 2D problem where the wakes from an upstream cascade of blades interacts with the 
blades of a downstream cascade. The formulation presented here will make use of a Cartesian coor-
dinate system {𝑥𝑥,𝑦𝑦}, where 𝑥𝑥 is an axial coordinate defined such that the airflow has Mach number 
𝑀𝑀𝑥𝑥 in the positive 𝑥𝑥-direction and 𝑦𝑦 is a tangential coordinate which is parallel to the direction in 
which the blade rows translate. The upstream and downstream blades translate in the negative and 
positive 𝑦𝑦-directions at Mach numbers Ω1𝑟𝑟/0 and Ω2𝑟𝑟/𝑐𝑐0 respectively. At time 𝜏𝜏 = 0 s the pitch-
change axis of the front rotor reference blade is aligned with the pitch change axis of the rear rotor 
reference blade at 𝑦𝑦/𝐷𝐷 = 0 and the spacing between the mid-chord positions of the blades on each 
cascade in the 𝑦𝑦-direction  is equal to 2𝜋𝜋𝜋𝜋/𝐵𝐵. The blades are modelled as infinitely thin flat-plates 
which are aligned with the local flow direction but otherwise have identical characteristics (such as 
chord-length, sweep, lean and drag coefficient) to the actual rotor blade at that particular radius. Also, 
the effect of the flow induced by the rotors is neglected such that the stagger angle, 𝛼𝛼, of each blade 
is defined by tan𝛼𝛼 = 𝑧𝑧𝑀𝑀𝑇𝑇/𝑀𝑀𝑥𝑥, where 𝑧𝑧 = 2𝑟𝑟/𝐷𝐷 and 𝑀𝑀𝑇𝑇 = Ω𝐷𝐷/2𝑐𝑐0. 

In order to describe the development of the wakes from the upstream cascade it is convenient to 
introduce two coordinate systems which are locked to the upstream blade row and have origins lo-
cated at the mid-chord of the upstream reference blade. The {𝑥𝑥1,𝑦𝑦1} coordinate system has coordi-
nates which a parallel to the global {𝑥𝑥,𝑦𝑦} coordinate system. The {𝑋𝑋1,𝑌𝑌1} coordinate system has co-
ordinates parallel to the chordwise and chord-normal directions and is related to the {𝑥𝑥1,𝑦𝑦1} coordi-
nate system by the equations below.  

𝑋𝑋1 = 𝑥𝑥1 cos𝛼𝛼1 + 𝑦𝑦1 sin𝛼𝛼1,  (1) 

 𝑌𝑌1 = −𝑥𝑥1 sin𝛼𝛼1 + 𝑦𝑦1 cos𝛼𝛼1,  (2) 
The reference blade of the upstream blade row produces a wake with mean deficit velocity 𝑢𝑢′ 

aligned with the negative 𝑋𝑋1-direction at the axial location of the leading edge of the downstream 
rotor which will be modelled using the ‘Schlichting’ wake profile 
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where 𝛽𝛽 = 2
1
3/ �4√10�√2 − 1�

2/3
�, 𝑈𝑈𝑟𝑟1 is the velocity of the air relative to the blade and 𝐿𝐿1 is the 

length of the wake which is defined as the distance in the 𝑋𝑋1-direction between the mid-chord of the 
reference blade and the axial location of the point of interest, 𝑏𝑏 = 4√10𝛽𝛽𝑏𝑏1/2 and 𝑏𝑏1/2 is defined as 
𝑏𝑏1/2 = 1

4�𝐶𝐶𝐷𝐷1𝑐𝑐1𝐿𝐿1. Substituting eq. (2) into eq. (3) gives an expression for the wake deficit ve-
locity produced by the front rotor reference blade in the {𝑥𝑥1,𝑦𝑦1} coordinate system. 

In order to calculate the unsteady loading on the downstream blade row, it is necessary to express 
the front rotor wake velocity deficit in a coordinate system fixed to the rear rotor blades. For this 
purpose we introduce a blade locked axial/tangential coordinate system {𝑥𝑥2,𝑦𝑦2} which is parallel to 
the axial and tangential coordinates and has its origin located at the leading edge of the reference 
blade on the downstream blade row. The {𝑥𝑥2,𝑦𝑦2} coordinate systems are related to the {𝑥𝑥1,𝑦𝑦1} coor-
dinate system by eqs. (4) and (5) below. 

𝑥𝑥1 = 𝑥𝑥2 + 𝑔𝑔 − 𝑠𝑠1 cos𝛼𝛼1 + �𝑠𝑠2 −
𝑐𝑐2
2
� cos𝛼𝛼2 − 𝑙𝑙1 sin𝛼𝛼1 + 𝑙𝑙2 sin𝛼𝛼2,  (4) 

𝑦𝑦1 = 𝑦𝑦2 + (Ω1 + Ω2)𝑟𝑟𝑟𝑟 + 𝑙𝑙1 cos𝛼𝛼1 − 𝑠𝑠1 sin𝛼𝛼1 − �𝑠𝑠2 −
𝑐𝑐2
2
� sin𝛼𝛼2 + 𝑙𝑙2 cos𝛼𝛼2,  (5) 

It will also be assumed that the downstream rotor is located sufficiently far downstream of the 
upstream rotor that the wake development (increase in wake width and decrease in the wake centreline 
velocity deficit) in the axial direction can be neglected in the vicinity of the downstream rotor. Thus 
we set 𝐿𝐿1 equal to its value at the leading edge of the downstream rotor blades. 

The mean velocity deficit produced by the upstream blade row, 𝑣𝑣′, is assumed to be equal to the 
sum of the velocity deficit produced by all the blades on the upstream cascade (which are evenly 
spaced and identical) which, making use of Poisson’s summation theorem can be written as  

𝑣𝑣′ = ∑ 𝐵𝐵1𝐶𝐶𝐷𝐷1𝑐𝑐1𝑈𝑈𝑟𝑟1
4𝜋𝜋𝜋𝜋 cos𝛼𝛼1

𝐺𝐺(𝑘𝑘𝑏𝑏) exp �𝑖𝑖 𝑛𝑛1𝐵𝐵1
𝑟𝑟
𝑦𝑦1 − 𝑖𝑖 𝑛𝑛1𝐵𝐵1

𝑟𝑟
𝑥𝑥1 tan𝛼𝛼1�∞

𝑛𝑛1=−∞ , (6) 

where 

 𝑘𝑘𝑏𝑏 = 𝑛𝑛1𝐵𝐵1𝑏𝑏
𝑟𝑟 cos𝛼𝛼1

, (7) 

and 

 𝐺𝐺(𝑘𝑘𝑏𝑏) = 40
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where 𝐶𝐶[ ] is the Fresnel cosine integral.  
One final coordinate transformation is required in order to express the upstream rotor wake veloc-

ity deficit incident onto the reference blade of the downstream blade row in a chordwise/chordnormal 
coordinate system, {𝑋𝑋2,𝑌𝑌2}, which is defined by eqs. (9) and (10) below.  

 𝑥𝑥2 = 𝑋𝑋2 cos𝛼𝛼2 + 𝑌𝑌2 sin𝛼𝛼2,  (9) 

𝑦𝑦2 = −𝑋𝑋2 sin𝛼𝛼2 + 𝑌𝑌2 cos𝛼𝛼2. (10) 
Substituting eqs. (9) and (10) into eqs. (7) and (8) and then substituting the resulting expressions 

into eq. (4) gives 

 𝑣𝑣′ = ∑ 𝐵𝐵1𝐶𝐶𝐷𝐷1𝑐𝑐1𝑈𝑈𝑟𝑟1
4𝜋𝜋𝜋𝜋 cos𝛼𝛼1

𝐺𝐺(𝑘𝑘𝑏𝑏) exp{i𝑛𝑛1𝐵𝐵1(Ω1 + Ω2)𝜏𝜏}∞
𝑛𝑛1=−∞  ×

exp �−i𝑘𝑘𝑋𝑋𝑋𝑋2 − i𝑘𝑘𝑌𝑌𝑌𝑌2 − i𝑘𝑘𝑋𝑋 �𝑠𝑠2 −
𝑐𝑐2
2
� − i𝑘𝑘𝑌𝑌𝑙𝑙2 − i𝑘𝑘𝑌𝑌1(𝑔𝑔 sin𝛼𝛼1 − 𝑙𝑙1)�, (11) 

where 

 𝑘𝑘𝑋𝑋 = 2𝑛𝑛1𝐵𝐵1
𝐷𝐷𝑀𝑀𝑟𝑟2

�𝑀𝑀𝑇𝑇1 + 𝑀𝑀𝑇𝑇2�,  (12) 
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𝑘𝑘𝑌𝑌 = −2𝑛𝑛1𝐵𝐵1
𝐷𝐷𝑀𝑀𝑟𝑟2

�𝑀𝑀𝑥𝑥
𝑧𝑧
− 𝑧𝑧 𝑀𝑀𝑇𝑇1𝑀𝑀𝑇𝑇2

𝑀𝑀𝑥𝑥
 �, (13) 

and 

𝑘𝑘𝑌𝑌1 = 2𝑛𝑛1𝐵𝐵1𝑀𝑀𝑟𝑟1
𝑧𝑧𝑧𝑧𝑀𝑀𝑥𝑥

. (14) 

Note that the upstream rotor wake deficit velocity is aligned with the −𝑋𝑋1 direction and therefore 
the upwash velocity (which is the component of velocity in the 𝑌𝑌2 direction) onto the downstream 
reference blade is given by 

𝑤𝑤 = − sin(𝛼𝛼1 + 𝛼𝛼2) 𝑣𝑣′. (15) 
We therefore have the following expression for the upwash on the chordline of the reference blade 

of the downstream blade row (on which 𝑌𝑌2 = 0) 

𝑤𝑤 = ∑ 𝑤𝑤𝑛𝑛1 exp�i𝑘𝑘𝑋𝑋�𝑈𝑈𝑟𝑟2𝜏𝜏 − 𝑋𝑋2� − i𝑘𝑘𝑌𝑌𝑌𝑌2�∞
𝑛𝑛1=−∞ , (16) 

where 𝑈𝑈𝑟𝑟2 is the velocity of the downstream blade relative to the air and 

𝑤𝑤𝑛𝑛1 = − sin(𝛼𝛼1 + 𝛼𝛼2) 𝐵𝐵1𝐶𝐶𝐷𝐷1𝑐𝑐1𝑈𝑈𝑟𝑟1
4𝜋𝜋𝜋𝜋 cos𝛼𝛼1

𝐺𝐺(𝑘𝑘𝑏𝑏) exp �−i𝑘𝑘𝑋𝑋 �𝑠𝑠2 −
𝑐𝑐2
2
� − i𝑘𝑘𝑌𝑌𝑙𝑙2 − i𝑘𝑘𝑌𝑌1(𝑔𝑔 sin𝛼𝛼1 − 𝑙𝑙1)�. (17) 

The total unsteady lift force per unit area acting on the chordline of the reference blade in the −𝑌𝑌2 
direction can be expressed as the sum of the unsteady lift on the blade due to its interaction with each 
upwash harmonic i.e.  

Δ𝑝𝑝 = ∑ Δ𝑝𝑝𝑛𝑛1 exp{i𝑛𝑛1𝐵𝐵1(Ω1 + Ω2)𝜏𝜏}∞
𝑛𝑛1=−∞ ,  (18) 

where Δ𝑝𝑝𝑛𝑛1 exp{i𝑛𝑛1𝐵𝐵1(Ω1 + Ω2)𝜏𝜏} is the response of the reference blade to a gust of the form 
𝑤𝑤𝑛𝑛1 exp�i𝑘𝑘𝑋𝑋�𝑈𝑈𝑟𝑟2𝑡𝑡 − 𝑋𝑋2� − i𝑘𝑘𝑌𝑌𝑌𝑌2� and Δ𝑝𝑝𝑛𝑛1 is given by (see, for example, Goldstein (1976)). 

Δ𝑝𝑝𝑛𝑛1 = 2𝜌𝜌0𝑈𝑈𝑟𝑟2𝑤𝑤𝑛𝑛1
�𝜋𝜋𝜎𝜎2�1+𝑀𝑀𝑟𝑟2�𝑋𝑋�2�

0.5 exp �−i 𝜋𝜋
4
− i 𝜎𝜎2𝑀𝑀𝑟𝑟2

1+𝑀𝑀𝑟𝑟2
𝑋𝑋�2� , 𝑛𝑛1 ≠ 0 (19) 

where 𝑀𝑀𝑟𝑟2 = 𝑈𝑈𝑟𝑟2/𝑐𝑐0 is the Mach number of the airflow relative to the downstream rotor blade, 
𝑋𝑋�2 = 2𝑋𝑋2/𝑐𝑐2 is a dimensionless chordwise coordinate and 𝜎𝜎2 = 𝑘𝑘𝑋𝑋𝑐𝑐2/2 is the reduced frequency of 
the gust harmonic interacting with the rear rotor blade. We do not consider the 𝑛𝑛1 = 0 terms in the 
analysis presented here as these correspond to the steady component of loading on the rotor blades. 

Following the derivation presented by Hanson (1985), the far-field tonal sound pressure produced 
by the periodic lift forces on the downstream rotor of a contra-rotating open rotor due to the wakes 
shed by the upstream rotor is given by the following expression  

𝑝𝑝 = i𝜌𝜌0𝑐𝑐02𝐵𝐵2𝐷𝐷
8𝜋𝜋𝑅𝑅𝑒𝑒(1−𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒)

∑ ∑ exp �i𝜔𝜔 �𝑡𝑡 − 𝑅𝑅𝑒𝑒
𝑐𝑐0
� − i𝜈𝜈 �𝜙𝜙 − 𝜋𝜋

2
��∞

𝑛𝑛2=−∞ 𝐼𝐼𝑛𝑛1,𝑛𝑛2
∞
𝑛𝑛1=−∞ , (20) 

where 

𝐼𝐼𝑛𝑛1,𝑛𝑛2 = ∫ 𝑀𝑀𝑟𝑟2
2 exp{−i(𝜙𝜙𝑙𝑙 + 𝜙𝜙𝑠𝑠)} 𝐽𝐽𝜈𝜈 �

𝜈𝜈
𝑧𝑧∗
𝑧𝑧� 𝑘𝑘𝑦𝑦

𝐶𝐶𝐿𝐿𝑛𝑛1
2
𝜓𝜓𝐿𝐿𝑛𝑛1(𝑘𝑘𝑥𝑥) 𝑑𝑑𝑑𝑑1

𝑧𝑧ℎ
, (21) 

𝜔𝜔 = 𝑛𝑛1𝐵𝐵1Ω1 + 𝑛𝑛2𝐵𝐵2Ω2, (22) 

𝜈𝜈 = 𝑛𝑛2𝐵𝐵2 − 𝑛𝑛1𝐵𝐵1, (23) 

𝑘𝑘𝑥𝑥 = 2
𝑀𝑀𝑟𝑟2

��𝑛𝑛1𝐵𝐵1𝑀𝑀𝑇𝑇1+𝑛𝑛2𝐵𝐵2𝑀𝑀𝑇𝑇2�𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒
(1−𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒) + 𝜈𝜈𝑀𝑀𝑇𝑇2�

𝑐𝑐2
𝐷𝐷

 ,  (24) 

 𝑘𝑘𝑦𝑦 = − 2
𝑀𝑀𝑟𝑟2

��𝑛𝑛1𝐵𝐵1𝑀𝑀𝑇𝑇1+𝑛𝑛2𝐵𝐵2𝑀𝑀𝑇𝑇2�𝑀𝑀𝑇𝑇2𝑧𝑧 cos𝜃𝜃𝑒𝑒
(1−𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒) − 𝜈𝜈 𝑀𝑀𝑥𝑥

𝑧𝑧
 � 𝑐𝑐2
𝐷𝐷

,  (25) 
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𝜙𝜙𝑠𝑠 = 2
𝑀𝑀𝑟𝑟2

��𝑛𝑛1𝐵𝐵1𝑀𝑀𝑇𝑇1+𝑛𝑛2𝐵𝐵2𝑀𝑀𝑇𝑇2�𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒
(1−𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒) + 𝜈𝜈𝑀𝑀𝑇𝑇2�

𝑠𝑠2
𝐷𝐷

,   (26) 

𝜙𝜙𝑙𝑙 = 2
𝑀𝑀𝑟𝑟2

��𝑛𝑛1𝐵𝐵1𝑀𝑀𝑇𝑇1+𝑛𝑛2𝐵𝐵2𝑀𝑀𝑇𝑇2�𝑀𝑀𝑇𝑇2𝑧𝑧 cos𝜃𝜃𝑒𝑒
(1−𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒) − 𝜈𝜈 𝑀𝑀𝑥𝑥

𝑧𝑧
 � 𝑙𝑙2
𝐷𝐷

,  (27) 

𝑧𝑧∗ = (1−𝑀𝑀𝑥𝑥 cos𝜃𝜃𝑒𝑒)𝜈𝜈
�𝑛𝑛1𝐵𝐵1𝑀𝑀𝑇𝑇1+𝑛𝑛2𝐵𝐵2𝑀𝑀𝑇𝑇2� sin𝜃𝜃𝑒𝑒

,   (28) 

and 

 1
2
𝜌𝜌0𝑈𝑈𝑟𝑟2

2 𝑐𝑐2𝐶𝐶𝐿𝐿𝑛𝑛1𝜓𝜓𝐿𝐿𝑛𝑛1(𝑘𝑘𝑥𝑥) = ∫ Δ𝑝𝑝𝑛𝑛1 exp �−i 𝑘𝑘𝑥𝑥
2
�2�2
�2

− 1�� d𝑋𝑋2
�2

0 , (29) 

where Δ𝑝𝑝𝑛𝑛1 is the 𝑛𝑛1𝑡𝑡ℎ Fourier harmonic of the unsteady pressure jump on the downstream blade row.  
The value 𝑧𝑧∗, defined in eq. (28) is an important parameter; it represents the point at which the 

argument of the Bessel function becomes equal to its order and, significantly, is close to the point at 
which the Bessel function achieves its maximum value. 

Substituting eq. (19) into eq. (29) and evaluating the integral yields for 𝑛𝑛1 ≠ 0 

(1)  𝐶𝐶𝐿𝐿𝑛𝑛1𝜓𝜓𝐿𝐿𝑛𝑛1(𝑘𝑘𝑥𝑥) = 𝑤𝑤𝑛𝑛1
𝑈𝑈𝑟𝑟2

2√2exp�i𝑘𝑘𝑥𝑥2 −i
𝜋𝜋
4�

𝜎𝜎2
0.5�1+𝑀𝑀𝑟𝑟2�

0.5
�
𝜎𝜎2𝑀𝑀𝑟𝑟2
�1+𝑀𝑀𝑟𝑟2�

+𝑘𝑘𝑥𝑥2 �
0.5 𝐸𝐸∗ �

2
√𝜋𝜋
� 𝜎𝜎2𝑀𝑀𝑟𝑟2
�1+𝑀𝑀𝑟𝑟2�

+ 𝑘𝑘𝑥𝑥
2
�
0.5
�, (30) 

where 𝐸𝐸∗ is the conjugate of the complex Fresnel integral. 
Having described the full equations for the unsteady response of the downstream blade row to the 

front rotor wakes, and the resultant sound radiation to the far-field, we turn to asymptotic analysis of 
the formulae to aid interpretation of the underlying physics. 

We start by noticing that the Bessel function in eq. (21) originates from an integration of the noise 
sources over the propeller disc and we can return to the original form by replacing it with Bessel’s 
integral 

𝐽𝐽𝜈𝜈 �
𝜈𝜈
𝑧𝑧∗
𝑧𝑧� = 1

2𝜋𝜋i𝜈𝜈 ∫ exp �iν � 𝑧𝑧
𝑧𝑧∗

cos𝑢𝑢 + 𝑢𝑢��d𝑢𝑢𝜋𝜋
−𝜋𝜋 ,  (31) 

which gives  

𝐼𝐼𝑛𝑛1,𝑛𝑛2 = 1
2𝜋𝜋i𝜈𝜈 ∫ ∫ 𝑔𝑔(𝑧𝑧) exp{iνΦ(𝑢𝑢, 𝑧𝑧)}𝜋𝜋

−𝜋𝜋  d𝑢𝑢d𝑧𝑧1
𝑧𝑧ℎ

,  (32) 

where 𝑔𝑔(𝑧𝑧) is an amplitude function  which is defined as   

𝑔𝑔(𝑧𝑧) = −
(1−i)𝐺𝐺(𝑘𝑘𝑏𝑏)𝐵𝐵1𝐶𝐶𝐷𝐷1𝑐𝑐1𝑀𝑀𝑟𝑟1

2 sin(𝛼𝛼1+𝛼𝛼2)𝑀𝑀𝑟𝑟2𝑘𝑘𝑦𝑦

4𝜋𝜋𝜋𝜋𝑀𝑀𝑥𝑥𝜎𝜎2
0.5�1+𝑀𝑀𝑟𝑟2�

0.5
�
𝜎𝜎2𝑀𝑀𝑟𝑟2
�1+𝑀𝑀𝑟𝑟2�

+𝑘𝑘𝑥𝑥2 �
0.5 𝐸𝐸∗ � 2

√𝜋𝜋
� 𝜎𝜎2𝑀𝑀𝑟𝑟2
�1+𝑀𝑀𝑟𝑟2�

+ 𝑘𝑘𝑥𝑥
2
�
0.5
�, (33) 

and Φ(𝑢𝑢, 𝑧𝑧) is a phase function which is defined as 

 Φ(𝑢𝑢, 𝑧𝑧) = 𝑧𝑧
𝑧𝑧∗

cos𝑢𝑢 + 𝑢𝑢 − Γ(𝑧𝑧), (34) 

with 

 Γ(𝑧𝑧) = 1
𝑀𝑀𝑟𝑟2

�𝑀𝑀𝑥𝑥 cot𝜃𝜃𝑒𝑒
𝑧𝑧∗

+ 𝑀𝑀𝑇𝑇2� 𝑠̅𝑠𝐿𝐿 + 1
𝑀𝑀𝑟𝑟2

�𝑀𝑀𝑇𝑇2𝑧𝑧 cot𝜃𝜃𝑒𝑒
𝑧𝑧∗

− 𝑀𝑀𝑥𝑥
𝑧𝑧
� 𝑙𝑙2̅ 

 + 𝑛𝑛1𝐵𝐵1
𝜈𝜈
�
�𝑀𝑀𝑇𝑇1+𝑀𝑀𝑇𝑇2�

𝑀𝑀𝑟𝑟2
𝑠̅𝑠𝐿𝐿 −

1
𝑀𝑀𝑟𝑟2

�𝑀𝑀𝑥𝑥
𝑧𝑧
− 𝑧𝑧 𝑀𝑀𝑇𝑇1𝑀𝑀𝑇𝑇2

𝑀𝑀𝑥𝑥
� 𝑙𝑙2̅ + 𝑔̅𝑔 𝑀𝑀𝑇𝑇1

𝑀𝑀𝑥𝑥
− 𝑀𝑀𝑟𝑟1

𝑧𝑧𝑀𝑀𝑥𝑥
𝑙𝑙1̅�. (35) 

where 𝑙𝑙1̅ = 2𝑙𝑙1/𝐷𝐷, 𝑙𝑙2̅ = 2𝑙𝑙2/𝐷𝐷, 𝑠̅𝑠𝐿𝐿 = 2𝑠𝑠𝐿𝐿/𝐷𝐷, 𝑠𝑠𝐿𝐿 = (𝑠𝑠2 − 𝑐𝑐2/2) and 𝑔̅𝑔 = 2𝑔𝑔/𝐷𝐷.  

2.2 Asymptotic analysis and quiet rotor design 
A number of authors including Chako (1965) and Cooke (1982) have considered evaluating double 

integrals of the form given by eq. (32) asymptotically for the case where |𝜈𝜈| → ∞. These studies all 
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demonstrate that the principle contributions to 𝐼𝐼𝑛𝑛1,𝑛𝑛2 arise from small regions of the integrand around 
certain critical points which for the purposes of the problem considered here can be divided into two 
general types: (a) Stationary points of the phase function which occur either within the ‘source annu-
lus’ or on the bounding curve of the annulus. (b) Points on the source annulus boundary where the 
tangential derivative of the phase function vanishes. 

In the following sections expressions for the leading order terms in the asymptotic expansion of 
𝐼𝐼𝑛𝑛1,𝑛𝑛2 will be presented. It will be assumed that 𝐵𝐵1 → ∞,𝐵𝐵2 → ∞ and that linear combinations of 𝐵𝐵1 
and 𝐵𝐵2 can also be regarded as being infinitely large (i.e. |𝜈𝜈| → ∞, |𝜔𝜔| → ∞). One final assumption 
which will be made is that the absolute value of a ratio of large parameters can be regarded as being 
𝑂𝑂(1). Note that these assumptions will not hold valid for all possible tones and observer angles pro-
duced by the open rotors considered later. This work will require the partial derivatives of the phase 
function. Note that we have adopted the notation 

 Φ𝑝𝑝,𝑞𝑞(𝑢𝑢, 𝑧𝑧) = 𝜕𝜕𝑝𝑝+𝑞𝑞

𝜕𝜕𝑢𝑢𝑝𝑝𝜕𝜕𝑧𝑧𝑞𝑞
Φ(𝑢𝑢, 𝑧𝑧). (37) 

 We consider first the case of stationary points which occur within the source annulus and, 
adopting the terminology of Chako (1965), will refer to these points as interior stationary points. It 
is assumed that each of these interior stationary points lie within the source annulus sufficiently far 
away from the inner and outer edge of the annulus and also separated from other critical points by a 
sufficient distance such that the principle contribution to 𝐼𝐼𝑛𝑛1,𝑛𝑛2 from each point can be considered in 
isolation. An interior stationary point occurs at {𝑢𝑢, 𝑧𝑧} = {𝑢𝑢� , 𝑧̃𝑧} when Φ1,0 = Φ0,1 = 0. For now it will 
also be assumed that Φ2,0Φ0,2 ≠ Φ1,1

2  at any of these points. From the definition of the partial deriv-
atives we can determine the location of the stationary points to be the solution to the following two 
equations,  

 sin𝑢𝑢� = 𝑧𝑧∗

𝑧𝑧�
, cos𝑢𝑢� = Γ′(𝑧̃𝑧)𝑧𝑧∗, (38) 

or, on eliminating 𝑢𝑢� , when 

𝑧̃𝑧2 = 𝑧𝑧∗2[[𝑧̃𝑧Γ′(𝑧̃𝑧)]2 + 1]. (39) 

We follow the method of Cooke (1982) to evaluate the contribution to 𝐼𝐼𝑛𝑛1,𝑛𝑛2 from an interior station-
ary point for |𝜈𝜈| → ∞ which gives the following expression 

𝐼𝐼𝑛𝑛1,𝑛𝑛2~ 𝑔𝑔�0,0

|𝜈𝜈|�Φ�2,0Φ�0,2−Φ�1,1
2 �

1
2

exp �iν �Φ�00 −
𝜋𝜋
2
� + i 𝜋𝜋

4
sgn(𝜈𝜈)sgn�Φ�2,0��1 + sgn�Φ�2,0Φ�0,2 − Φ�1,1

2 ���.(40) 

where the hat on a parameter indicates that it is evaluated at the critical point. Contributions from the 
hub region can be evaluated using the same method which yields a similar expression.  
A plot of the sound pressure level spectrum calculated using the expressions given above for a 
straight-bladed rotor is shown in figure 10 below. Results calculated using a full numerical calculation 
of 𝐼𝐼𝑛𝑛1,𝑛𝑛2 (circles) are plotted along with the levels calculated using the asymptotic expressions derived 
in this paper (dots). There is generally reasonable agreement between the exact and asymptotic results 
which gives confidence in the accuracy (and usefulness) of the asymptotic expressions. The other 
point of note with these results is that tones associated with interior critical points (blue) are generally 
of a much higher level than tones associated with boundary critical points (red).  Based on these 
results, one approach to reduce the overall level of noise produced by this noise source would be to 
design a rotor for which no interior critical points occur for all significant tones at important observer 
positions. 

 
6  ICSV24, London, 23-27  July 2017 



ICSV24, London, 23-27 July 2017 
 

 
Figure 1. Plot of SPL vs frequency. Circles denote a numerical solution and dots denote an asymp-
totic solution. Normal interior critical point (blue), boundary critical point (red), |𝑧𝑧∗| > 1 (black). 
 
Recall that for |𝑧𝑧∗| > 0, interior critical points are located at  
 
 𝑧̃𝑧2 = 𝑧𝑧∗2[[𝑧̃𝑧Γ′(𝑧̃𝑧)]2 + 1]. (43) 
 
For no lean and |𝑧𝑧∗| > 0  we have Γ(𝑧𝑧) defined as 
 
 Γ(𝑧𝑧) = 1

𝑧𝑧∗ sin𝜃𝜃𝑒𝑒

𝑠̅𝑠𝐿𝐿
𝑀𝑀𝑟𝑟2

+ 𝑛𝑛1𝐵𝐵1
𝜈𝜈
𝑔̅𝑔 𝑀𝑀𝑇𝑇1

𝑀𝑀𝑥𝑥
. (44) 

 
It will also be useful to define Θ(𝑧𝑧) = 𝑠̅𝑠𝐿𝐿/𝑀𝑀𝑟𝑟2 sin𝜃𝜃𝑒𝑒 such that  
 
 Γ′(𝑧𝑧) = 1

𝑧𝑧∗
Θ′(𝑧𝑧). (45) 

 
Substituting into about eq. yields the following expression for 𝜙𝜙 for a ‘critical design’  
 

 Θ′(𝑧𝑧) = �1 − �𝑧𝑧
∗

𝑧𝑧
�
2

, 𝑧𝑧 ≥ |𝑧𝑧∗|. (46) 
 
Rotors which have Θ′(𝑧𝑧) larger than the ‘critical design’ defined by the equations above will have no 
interior critical points. Such a design can be attained by selecting an appropriate profile for the down-
stream blade leading edge sweep, 𝑠̅𝑠𝐿𝐿. Examination of the asymptotic expression for the boundary 
critical points reveals that increases in blade sweep past the critical design will result in reductions in 
the level of the radiated sound (via the Φ�0,1 term). Also note that increasing the sweep of the down-
stream blade row has the added effect of increasing the spacing between the two rotors which in-
creases the wake width at the downstream rotor and decreases the amplitude of certain high frequency 
tones (via reducing the magnitude of the 𝐺𝐺(𝑘𝑘𝑏𝑏) term).     
 Figure 2 below plots the sound pressure level of 4 individual tones against a ‘sweep parameter’ 
𝜆𝜆, which is defined such that the critical design corresponds to 𝜆𝜆 = 1. Values of 𝜆𝜆 less than one have 
interior critical points on the blade whilst values of 𝜆𝜆 greater than one do not have interior critical 
points on the blade. It is clearly observed that, as expected, further increases in blade sweep past the 
critical design reduce the level of these tones.   
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Figure 11: Plot of SPL versus ‘sweep parameter’, 𝜆𝜆 for 2 different tones. ‘Exact’ numerical solutions 
(black curve), Interior critical asymptotic solutions (blue dots), boundary critical asymptotic solutions 
(red dots), asymptotic solution for the critical design (green circle). 
 

3. Conclusions 
This paper has summarised a number of low- and high-speed experimental wind tunnel experi-

ments undertaken using a model-scale open rotor test rig. Some of the issues encountered and the 
findings from these tests were described. A method was then presented for predicting the tonal noise 
produced by the interaction of the viscous wake from the upstream rotor with the downstream rotor. 
The paper concluded with an asymptotic analysis of the analytical equations which yielded insight 
into how the noise from this noise source could be reduced.  
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