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In this study, we propose a formulation of the problem of non-linear dynamics by con-
sidering the random geometric or mechanical physical parameters and by developing the
solution on the basis of polynomial chaos. This approach coupled Harmonic Balance
Method (HBM) with the Polynomial Chaos Expansion (PCE) method. This approach
developed will be called stochastic HBM. The difficulty associated with the evaluation of
nonlinearity in both the frequency domain and the stochastic domain will be resolved.
Several numerical simulations illustrate the efficiency and the precision of the proposed
method.

Keywords: nonlinear, uncertainties, PCE, HBM.

1. Introduction

The study of non-linear systems takes a prominent place in many industrial fields such
as auto-motive and aerospace. This importance has motivated many scientists to predict the
dynamic behaviour of nonlinear systems. In addition, it has been shown that geometric and
material physical parameters admit dispersions linked in general to the manufacturing processes.
Therefore it is necessary to take these dispersions account in order to predict a robust dynamic
behaviour capable of assisting a robust design of these systems.

Many methods are taken into account in the prediction and analysis of the dynamic be-
haviour of nonlinear systems. The Monte Carlo Simulation (MCS) method is the reference
method [1]. This method is based on the resolution of simulations for different values of the
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random parameters, requires many realizations and therefore proves costly in computation time.
In this context, the Polynomial Chaos Expansion (PCE) method can be a very interesting al-
ternative [2]. It is based on a probabilistic characterization of the uncertainties; it formalizes
a stochastic process with finite variance by a series development of polynomial functions. The
last are orthogonal to a defined probability measure with respect to some independent random
variables modelling the uncertainties. The Polynomial Chaos Expansion (PCE) method has al-
ready proved its effectiveness in linear problems [3]. Nevertheless, the latter presents difficulties
with non-linear problems presenting multiple solutions.

The objective of this study is to estimate the stochastic nonlinear dynamic response and this
for a reasonable computation cost. A method based on the coupling (PCE) of and Harmonic
Balance Method (HBM) will be developed. Indeed, (HBM) has proved its efficiency in dealing
with non-linear problems [4], while the (PCE) method allows dealing random problems. First,
the modelling of the system with the non-linearity will be detailed. After, random phenomena
will be explained. Finally, the solution of the posed problem will be detailed. We will recall
the methodology for dealing with the deterministic non-linear case, and then we will look at
systems with regular uncertainties and nonlinearities. The proposed method will be validated
using numerical simulations in several case studies.

2.  Modeling of a non—linear structure

The discretization by the finite element method with N Degree Of Freedom (DOF) of a
linear structure gives the following matrix system:

[M[{a} + [CHa} + [K{u} = {Fear} (1)

With [M] mass matrix [C] damping matrix [K] stiffness matrix and we note {u} the displace-
ment vector and {F..;} the external forces vector.
In this system there may be non-linear phenomena due to:

e Intermittent contact or friction called non-linearity of contact modeled by non-linear force:

(Rt ={ fd 000 ®

e Large displacement for thin structures called geometric nonlinearity modeled by non-

linear force:
{Fu{u})} = [Kul{u"} (3)

p essentially quadratic or cubic.
The nonlinear system modeling the nonlinear dynamics of a structure discretized by the finite
element method is given by:

[(M{ay + [C{a) + [K{u} + {Fu({u})} = {Feut} (4)
with {F,;({u})} is the non linear force vector. In this study, we used a cubic geometric non
linearity.

3. Stochastic non-linear problem solving

3.1 Deterministic non—linear formulation

In order to solve the non-linear problem defined in Equation ([4)), we propose to use Harmonic
Balance method (HBM) method. This approach consists in expressing the non-linear dynamic
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response {u(t)} as well as the excitation {F..;} in the form of multiple Fourier series [5]:

H

{u(t)} = { z::l (U; cos(pwt) + U sin(pwt))} (5)
{Fm} = { f:l (ch cos(pwt) + F; sin(pwt))} (6)

with H the number of harmonics retained. The hypothesis on H is based on the a priori
knowledge of the nature of {u(t)}. Most often, the mechanical systems react to the 3rd, see
the 5th harmonic and U, and U, define the unknown coefficients of the finite Fourier series.
The (HBM) allows only periodic or quasi-periodic responses to be processed. For chaotic
responses temporal integration remains the only solution. To illustrate the method, we take
the case of geometric non—linearity. Non-linearity results in a displacement-dependent stiffness
matrix. Equation (4)) becomes:

[M]{a} + [CHa}t + [Kul{u} = {Feu} (7)

with

[Kul{u} = [K{u} + {Fu({u})} (8)
By injecting the equation and (6) into equation (7)), and by isolating the contributions of
each harmonic, we obtain a nonlinear algebraic system of size 2 x H x N:

0] :
(M) + Kn({u})] e v | _)
0 —plC] e S R R S W
0 ' ‘

The perturbation method often used to solve the Duffing equation is not suited to large prob-
lems. The aim being to follow the evolution of the vibratory behaviour as a function of the
pulsion w, the problem Eq ({]) is solved in the form:

R(U,w) = L(U,w)U — F =0 (10)
where L is defined by L = diag(Ly,..., Ly, ......... Ly),
with
_ | = w)?[M] + Ku({u})] pw|[C]
b= —palC] —(p)[M] + Kou({u}) ()

Then U and, F' denote the unknown vector of harmonic coefficients, the projection of the
external forces. They are given by respectively:

U=[USUS,...... USUS, US, U (12)
F=|FF5...... FSFS, S, F] (13)

R is a non-linear regular function which depends on the parameters w and the unknown U. The
non-linear behavior generates the possibility of having several solutions of U for one w given.
The continuation method has been developed to solve this type of equation. The resolution is
iteratively following a certain path that makes the solution unique to iteration, Continuation
methods are classified into two categories: the Prediction—Correction (PC) continuation method
[6] and the Numerical Asymptotic Method (NAM) [7]. In this work, I have opted for the
Newton—Raphson numerical algorithm for solving the non linear algebraic Equation , the
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curve (U,w) can be obtained as sequence of points for discrete value of w.

Appling the Galerkin method, for simplify we will trounced the harmonic series to fundamental
harmonic p = 1, the residual is orthogonalized with respect the trial functions of harmonic
approximation sinwt and cos wt.

2m
w

/ Rit)sin(wt)dt =0  for i=1...... HxN (14)
/Ri(t) cos(wt)dt =0 for i=1...... Hx N (15)
0
Then we obtained:
G(Uica Uisa LU) =0 (16)

The following Newton-Raphson approximation is used:
(UL U7 = (U7, U7) + Gge s (U7 U ) G oy (UF, UYY) (17)

where G(ye ) is the jacobian of G(Uf, UY).
The general principle of these methods is to find a solution (U7 UZ*!, wit1) satisfying the
criterion ||R(U7TY wit)|| < g, (U7 wit!) is generated from the solution (U7, w’) through a

prediction followed by a succession of corrections.

3.2 Stochastic response of the system based on the Polynomial Chaos Expansion

In a general context several forces and materials parameters can be considered as random,
the following random quantities have to be considered: mass, damping and stiffness matrix
parameters (defined respectively by [M], [C] and[K]) as well as the external forces terms defined
by {ﬁ ext}. For the non-linear system, the equation of motion Eq may be written as:

(M{u} + [MH{u} + [KHa} + {Fu({@})} = {Feu} (18)

We propose to expand the uncertain parameters by using the classical Karhunen—Loeve expan-
sion [8] with the Galerkin formulation of the finite element method [9] as follows:

K] = ;[Ki] & 0= ;}[CJ’] &, M= ;[Mk] & (19)

The external vector force is: .
{ﬁe} = Z {fem} “Em
m=0

&i:&j, &m and &, are the random variables.
The response of non linear dynamic systems with the random properties is also a random
process the vectors u(t), @(t) and () are expanded along polynomial chaos basis.

} Z{Un ¢n {f%}z 1)
} Z{un wn {574}1 1)

()} = Z{un }-vn({&3E) (20)
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where ¥(&;) are multidimensional Hermit orthogonal polynomials of the random variables &;
defined by:

( T ieHey)

YnlEir oo &) = (-1 e (5 T{eHe}) 2)

un(t), U, (t) and 4,(t) denote a vector determinist coefficients Subsisting all this development
into equation of motion:

Z Z{Un Ml - En + Z Z{un C5]- &n

#3300} (K] +fnz(2{un W) = 1] 2

we multiply the equation obtained by ,,. If we used averaged (integration on the domain
of random variables), and use the orthogonality properties of polynomials, we obtained the
following equation:

Zz{un Mk <§kz¢n¢m>+22{un ']'<§j¢n¢m>
k=0n=0 j=0n=0
U F
+Z Z{un - < 5@ wn wm > +fnl(2{un<t)}) < wn wm >= Z [fe]' < ém wm >
i=0 n=0 n=0 m=0
(23)
< & Yy, Yy, > is the inner product defined by the mathematical expectation operator.
Using matrix notations the resulting algebraic non linear system can be rewritten as:
[MGHU} + [CGHU} + [KGHU} + {FGu} = {FG.} (24)
with
Ug Ug Ug FGnlO
Uy (1 Uy FG
Wet =1 g, ( Wer=1 o, ( Wel=9 , ( FGat=9 pq .
Uy Wy Uy FGnl U
and
FGeO
FGe 1
{FG.} = FG.,
FGnl U
M c K
[MG]St:Z[ ] <€k¢s¢t Z <€] ¢swt [ ]t:Z[Ki]'<€i¢s¢t>

U F
{FGnlt} = fnl (Z{un(t)}> - < ¢n 'l/)t > 7{FGet} = Z_{Fextm}' < ¢m wt >
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Note that due to the orthogonality of polynomials, most of expressions < &; i, 1, > are zero.
We use Harmonic Balance method (HBM) method. This approach consists in expressing the
non-linear stochastic dynamic response {Ug(t) as well as the excitation {Fge.(f)} in the form:

{Ug(t)} = {Z(ng cos(pwt) + Ug, sin(pwt))} (25)

p=1
H
{Fgext(t)} = Z(Fép cos(pwt) + Fe, sin(pwt)) (26)
p=1
Non-linearity results in a displacement-dependent stiffness matrix. Equation becomes:

[MGH{U} + [CGHU} + [KGul{U} = {FGeu} (27)

with [KGu({Uc}H){Uc} = [KG{Ug} +{FG.({Ug})}. By injecting the equation and
into equation , and by isolating the contributions of each harmonic, we obtain a nonlinear
algebraic system:

[0] :
[0] —(pw)Q[MG] + KGu({Uc})] pwlCG] [0] UG;
—pw[CG] —(pw)* [MG] + KGu({Us})] Uy
[0] :
FGp
~ ) FG:
(28)
R(Ug,w) = L(X,w)X —A=0 (29)

Then X denote the unknown vector of harmonic coefficients, and A the projection of the
external forces. They are given respectively by:

X = [Ucs,Ust, ... UeS Uy Ul Usy]
A=[FG{,FGi,...... PG PG , FGY, FGY]
L is defined by L = diag(Ly,...... Ly, ,Lp).
with
I l —(pw)*[M] + K ({u})] pw[C] ]
g —pw|[C] —(pw)*[M] + Kpu({u})]

After resolving equation, the mean and variance values of amplitude for p-th DOF are given
directly by:

mean(A,) = /()2 + (ug,)2 (30)
war(4y) = 32 (R P+ () < 02 > (31)

3.3 Numerical examples
3.3.1 Description of the nonlinear model under study

In this section, in order to verify the applicability of the proposed method, we will present
numerical example cases for a nonlinear two-DOF model with geometric nonlinearities and
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uncertainties. The nonlinear two—degrees—of—freedom model shows Fig[l] is chosen due to its
simplicity and to better understand the effects of uncertainties of various physical parameters.
The equations of motion take the following form for this system:

ma 0 ill C1 + Co —Co Ul /{31 + /{32 —k’Q Uq Fnll
[0 m2]{ﬂ2}+[ —C2 02]{1'62}_'_[ —ks ks Uz * Foio
. FH COS wlt + F12 sin WQt
| Fyy coswat + Fyy sin wot

The cubic polynomial non linearity given by: Fuy = kui(u1)® — kuo(ue — up)?® and Fp =
Fni2(ug — u1)®. The values of the physical parameters are given in Table

Uz Pexcz
- ]_I
2 EF‘ kz)%/ oz
Uy u }J Pextl
! QF‘ scl%/ Kut

Figure 1: Two-DOF model with nonlinearities.
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Table 1: Parameters values.

Parameters my | o C1 Co k’l k‘g knll kle F11 F12 F21 F22 Um
Values 1 1 1025|0111 0 | 0,1ky | 1 0 0 0 | 2%

In this study, it has been chosen to investigate the effects of uncertainties by considering
mass uncertain parameters. The mass parameter is supposed to be a random variable and
defined as follows: m = m(1 + 0,,v,,) With o, is a zero mean value Gaussian random variable.
M = my = my is the mean value v,, is the standard deviation of this parameter. Firstly, the
mean and variance of the magnitude of frequency response have been computed by coupled
HBM in order 1 and PCE in order 2 method.The obtained results are compared with those
given by the direct Monte Carlo simulation 700 simulations. The obtained results are plotted
in Figures 2,3,4 and 5 correspond respectively to mean and variance of DOF (1) and DOF (2)
and they are a perfect agreement between PCE method and MCS.

4. Conclusion

In this study, the approach to calculating the random non linear dynamic response is pre-
sented, the classical methods require a considerable cost both in terms of computation time
and data storage. The proposed method coupling a polynomial chaos expansion and harmonic
balance method offers optimal cost then it is a powerful technique for non linear structures.
Future work consists of applying method for complex structures in the mechanical engineering
field.
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Figure 2: Mean frequency response of DOF (1).
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Figure 4: Mean frequency response of DOF (2).
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