
 
 

 

 

  1 

IDENTIFICATION OF FOUNDATIONS IN ROTATING MA-
CHINERY WITH NON-PROPORTIONAL HYSTERETIC DAMP-
ING ASSUMPTION 

Minli Yu and Jike Liu 

Sun Yat-sen University, Department of Applied Mechanics and Engineering, Guangzhou, Guangdong, China  

email: yumli@sysu.edu.cn  

Ningsheng Feng 

Shandong University, School of Mechanical Engineering, Ji’nan, Shandong, China 

Eric Hahn 

University of New South Wales, School of Mechanical and Manufacturing Engineering, Sydney, New South 

Wales, Australia  

The overall dynamic behaviour of rotating machinery is significantly affected by its foundation. 
Therefore, foundation parameters are necessarily identified in the recent parametric model based 

rotor dynamic study, including rotor fault diagnosis and machine structure design. This paper 
presents a procedure to identify the modal parameters of rotor foundations with non-

proportional hysteretic damping assumption. By introducing quasi-modal parameter, the modal 

analysis equation can be decoupled under physical coordinate. Hence, parameter identification 
equation with multiple solution sets is derived and each independent solution set corresponds to 

the modal parameters of each vibration mode. A double iteration algorithm is applied to solve 

the derived non-linear identification equation with complex unknowns. The excitation forces 

and displacements of the foundation, which are obtained when the rotating machinery is in op-
eration, serve as input data to solve the identification equation. Here, the foundation excitation 

forces are calculated by the absolute displacements of the rotor at the bearing supports, based on 

the known rotor model and rotor unbalances. The technique developed in this paper is validated 
by identifying the equivalent foundation of a 162 degree of freedom numerical rotor-bearing-

foundation system (RBFS). It is shown that an accurate and reliable foundation model with non-

proportional hysteretic damping assumption can be identified, which reproduces the rotor re-

sponses correctly when substituted into the original RBFS. However, further experimentation is 
needed to properly evaluate the applicability of the proposed identification procedure to the 

foundation of actual rotating machinery.  
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1. Introduction 

The overall dynamic behaviour of rotating machinery systems is significantly affected by its 

supporting structure or foundation which, in order to enable rotor dynamic system studies [1-3], 

generally needs to be modelled by appropriate parameters to form an equivalent foundation (defined 

as a foundation which, when substituted for the actual foundation, reproduces the vibration behav-

iour of the rotating machinery system over the operating speed range of interest). Obtaining these 

appropriate parameters is still an area for research and one promising technique uses the measure-

ments of the foundation motions of actual rotating machinery [4] to identify relevant modal parame-

ters for the equivalent foundation. If successful, such an identification technique would be applica-
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ble to identify the supporting structures of existing rotating machinery installations, using readily 

available monitoring instrumentation.  

Such modal parameter identification procedures usually solve a modal analysis equation to iden-

tify the modal parameters of all vibration modes simultaneously, which include natural frequencies, 

mode shapes, modal masses and damping ratios/factors [5, 6]. Serving as the measurement data 

input are the harmonic excitation forces and displacement responses on the foundation, caused by 

the existing rotor unbalance when the machinery is in operation. Under laboratory environment, the 

displacement responses of the foundation at any given rotor operating speed can be measured by 

accelerometers; however the foundation excitation forces need to be determined indirectly. Never-

theless, a few different techniques to estimate the excitation forces have been experimentally vali-

dated by different researchers [7, 8], providing different levels of accuracy in force estimation.  

In earlier modal approaches, the foundation was commonly assumed to have proportional damp-

ing as this assumption reduced the complexity of the modal analysis and provided a general approx-

imation [9, 10]. Hence, a few modal parameter identification techniques with proportional damping 

assumption have been developed, enabling acceptable identification results with experimental vali-

dation [11, 12]. However, in real applications, the structures to be identified do not necessarily have 

proportional damping and may even involve nonlinearity [13]. Consequently, a more accurate as-

sumption of non-proportional damping is preferred when modelling large and complex structures in 

industry [14-15].  

In our previous research, we developed a quasi-modal parameter based identification technique 

to identify an equivalent system for 5 degree of freedom (DOF) systems, under the assumption of 

non-proportional hysteretic damping [16]. In this paper, this technique will be further evaluated, via 

numerical experiments, to identify equivalent foundations in rotor machinery. Experimental evalua-

tion of the technique under laboratory environment will be left for future work. 

2. Identification theory 

An n DOF equivalent foundation with hysteretic damping, which is expected to accurately repre-

sent the original foundation, has the equation of motion: 

 𝐌𝐱̈̃ + 𝐂𝐱̇̃ + 𝐊𝐱̃ = 𝐟. (1) 

Here, 𝐌, 𝐂 and 𝐊 are the assumed symmetric mass, damping and stiffness matrices of the equiv-

alent foundation respectively. The hysteretic damping matrix is further represented as 𝐂 = 𝐇/Ω 

since it is assumed to be frequency dependent [17]. The elements in vector 𝐱̃ are the n independent 

displacements chosen to coincide with the convenient measurement locations on the original foun-

dation, and include the application points of the excitation forces. The elements of vector 𝐟 are the 

excitation forces acting at those selected locations. Assuming the structure is under harmonic exci-

tation with frequency Ω and the response of the structure at steady state is periodic,  𝐟 = 𝐅̃𝑒𝑖Ω𝑡 and 

𝐱̃ = 𝐗̃𝑒𝑖Ω𝑡; one can obtain from Eq. (1): 

 −Ω𝟐𝐌𝐗̃ + 𝒊𝐇𝐗̃ + 𝐊𝐗̃ = 𝐅̃. (2) 

Defining complex stiffness 𝐊∗ = 𝐊 + 𝑖𝐇, equation (2) is written as  

 −Ω𝟐𝐌𝐗̃ + 𝐊∗𝐗̃ = 𝐅̃. (3) 

The homogenous form of Eq. (3) leads to a complex eigenproblem, whose solutions are diagonal 

complex eigenvalue matrix 𝛌∗ and complex modal matrix 𝚽∗. The orthogonality property of the 

complex modal matrices 𝚽∗ holds; therefore matrices 𝐌 and 𝐊∗are diagonalised by the complex 

modal matrix to obtain complex modal mass matrix and complex modal stiffness matrix: 

 𝐦∗ = 𝚽∗𝐓𝐌𝚽∗, (4) 
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 𝐤∗ = 𝚽∗𝐓𝐊∗𝚽∗. (5) 

Thereby, complex eigenvalue matrix is defined as 

 𝛌∗ = 𝐦∗−𝟏𝐤∗. (6) 

Rewriting Eq. (3) in modal coordinate by letting 𝐗̃ = 𝚽∗𝐐̃ and pre-multiplying both sides of the 

equation by the transpose of complex modal matrix 𝚽∗T
, one obtains: 

 (−Ω𝟐𝚽∗𝐓𝐌𝚽∗ + 𝚽∗𝐓𝐊∗𝚽∗)𝐐̃ = 𝚽∗𝐓𝐅̃. (7) 

Substituting 𝐐̃ = 𝚽∗−1𝐗̃ and pre-multiplying both sides of the equation by 𝐦∗−1
, Eq. (7) is re-

written as:  

 (−Ω𝟐𝐈 + 𝐦∗−𝟏𝐤∗)𝚽∗−𝟏𝐗̃ = 𝐦∗−𝟏𝚽∗𝑻𝐅̃. (8) 

Introducing complex quasi-modal matrix, which has transformation relationship with complex 

modal matrix 𝚽∗: 

 𝐀∗𝐓 = 𝚽∗−𝟏
, (9) 

and substituting Eq. (6) into Eq. (8), one obtains: 

 (−Ω𝟐𝐈 + 𝛌∗)𝐀∗𝐓𝐗̃ = 𝐦∗−𝟏𝚽∗𝑻𝐅̃. (10) 

Eq. (10) comprises n identification equations (k=1...n): 

 (−Ω𝟐 + 𝝀𝒌
∗ ) ∑ 𝒂𝒋𝒌

∗𝒏
𝒋=𝟏 𝑿𝒋 = 𝒎𝒌

∗ −𝟏 ∑ 𝜱𝒋𝒌
∗ 𝑭𝒋

𝒏
𝒋=𝟏 . (11) 

Providing the amplitudes of excitation force and displacement response on the foundation as in-

put data, the modal parameters to be identified in each of Eq. (11) are 𝜆𝑘
∗ , 𝑎𝑗𝑘

∗ , 𝛷𝑗𝑘
∗  and 𝑚𝑘

∗  (j=1...n), 

which correspond to the modal parameters of each individual vibration mode. Hence, it can be con-

sidered there are maximum n independent sets of solution to Eq. (11). The procedure to solve Eq. 

(11) for the unknown parameters are as presented in Ref [16].  

After all required complex modal parameters, which include 𝜆𝑘
∗ , 𝛷𝑗𝑘

∗  and 𝑚𝑘
∗  (j = 1...n; k = 1...n), 

are identified, they are substituted into the frequency response function to reproduce the displace-

ment response of each DOF. For an n DOF system with non-proportional hysteretic damping, the 

displacement response at each DOF is (i=1...n) [17]: 

 𝒙𝒊 = ∑ ∑
𝜱𝒊𝒌

∗ 𝜱𝒋𝒌
∗ 𝑭𝒋

𝒎𝒌
∗ (−Ω𝟐+𝝀𝒌

∗ )

𝒏
𝒋=𝟏

𝒏
𝒌=𝟏 . (12) 

By convention, the eigenvalues 𝜆𝑘
∗  (k = 1…n) are further represented in term of complex quanti-

ties [17]: 

 𝝀𝒌
∗ = 𝝎𝒌

𝟐 + 𝒊𝝎𝒌
𝟐𝜼𝒌, (13) 

where 𝜔𝑘  is the natural frequency and 𝜂𝑘  is the damping loss factor of the kth vibration mode. 

3. Illustrative example 

3.1 Model setup of the RBFS 

The developed identification theory was applied to identify the equivalent foundation of an 

RBFS via numerical experiment. The schematic of the RBFS is shown in Fig. 1, which represents 

an unbalanced rotor running in two hydrodynamic bearings mounted on a damped flexibly support-

ed flexible foundation block.  

The rotor is assumed to be 1270 mm long and have a uniform diameter of 101.6 mm. The rotor 

model is divided into 8 equal segments so that each segment is 158.75 mm long. Each end of the 
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rotor is supported by narrow plain hydrodynamic journal bearings. Each bearing is assumed to have 

a length/diameter ratio of 1/4, a radial clearance of 0.0508 mm and a mean oil viscosity of 6.9 × 

10-3 N s/m2. The unbalances are assumed to be lumped on the rotor as shown in Fig. 1. The magni-

tude and phase of each unbalance are also indicated in Fig. 1.  

The dimension of the foundation block model is shown in Fig. 2, being L=1270 mm long, 

W=317.5 mm wide and H=158.75 mm high. The block is assumed to be isotropic with density 7850 

kg m-3, Young’s modulus 210 GPa, shear modulus 80 GPa and Poisson's ratio 0.3. It is divided into 

16 cubical finite elements, resulting in 54 nodes. Points B1 and B2 are the connection points between 

the foundation and the bearings, where the excitation forces are transmitted to the foundation. Every 

node will have 3 DOFs, viz. the x, y and z translational displacements. Hence, this foundation has a 

total of 162 DOFs and 162 vibration modes. Each cubical element in the foundation model has the 

same isotropic spring and damper supports at its bottom nodes as shown in Fig. 2; but different cu-

bical elements have different values of spring stiffness and hysteretic damping, which are the same 

as those used in Ref [18]. 

 

 
U1=10-4 kg m, U2=10-5 kg m, U3=10-6 kg m. 

Figure 1: Unbalanced rotor mounted on a flexible foundation block with spring and damper support; with 

unbalance distribution No. 1 

 

  

Figure 2: Finite element model of the foundation with spring and damper support. 
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Figure 3: The 7 DOFs and measurement locations on the foundation block. 

 

The equation of motion for such a foundation model, assuming a lumped mass formulation for 

each cubical element, results in a 162 by 162 diagonal mass matrix, a 162 by 162 diagonal damping 

matrix and a 162 by 162 symmetric stiffness matrix. ANSYS is used to assemble these matrices and 

find the foundation natural frequencies and mode shapes. The foundation model has 162 vibration 

modes. According to the mode shapes simulated by ANSYS [18], the first 6 modes are rigid body 

modes and the 7th onwards are flexural modes. The first 8 natural frequencies are 517.41 rad/s, 

697.43 rad/s, 786.28 rad/s, 797.84 rad/s, 886.56 rad/s, 1009.3 rad/s, 2730.6 rad/s and 4767.5 rad/s. 

Assuming the operating speed range of the RBFS to be from 300 to 1250 rad/s, the maximum 

excitation frequency will be 1250 rad/s. In this system since the 8th natural frequency of the founda-

tion is around 4 times of the maximum measurement frequency, the contribution of the 8 th and 

higher vibration modes to the vibration behaviour of the foundation was assumed to be negligible, 

and hence an equivalent foundation with 7 DOFs was expected to properly reproduce the vibration 

behaviour of the RBFS over the operating speed range. Fig. 3 shows the 7 selected measurement 

locations and directions on the foundation surface. Measurements in directions 1, 2, and 3 are taken 

at B1; in direction 4 and 5 are taken at B2; and in directions 6 and 7 are taken at the two sides half-

way along the block. It is assumed that all external forces on the foundation are transmitted through 

the bearings. These forces act in directions 2, 3 at B1 and 4, 5 at B2. These selected DOFs are ex-

pected to sufficiently describe the 1st to 7th mode shapes, hence forming a condensed 7 DOF equiva-

lent foundation. 

The vibration behaviour of the RBFS was simulated by an in-house transfer matrix software 

[19], in which the rotor, bearing and foundation models as discussed above were implemented. The 

numerically calculated forces and displacements at the selected locations (DOFs) served as the 

‘measurement data’, which were used as the input data to identify the modal parameters of the 

equivalent foundation. The input data at these locations resulted from the unbalance distribution 

shown in Fig. 1, and was calculated at 50 rad/s intervals over the rotor speed range of 300 to 1250 

rad/s, resulting 20 measurement speeds. The ‘measurement’ data was simulated with 16 digit accu-

racy at this stage in order to validate the proposed identification technique in principal. 

3.2 Identification result 

The identified natural frequencies are compared with the ‘actual’ natural frequencies obtained 

from numerical experiment in table 1. As can be seen, all 7 natural frequencies are identified to 

within an accuracy of 1 percent. The identified damping loss factors are also shown in table 1. The 

identified mode shapes and modal masses are complex quantities. Their moduli and arguments are 

presented in tables 2 and 3 respectively. 
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Table 1: Actual and identified natural frequencies (rad/s); identified damping loss factors (dimensionless)  

Mode 1st  2nd  3rd  4th  5th  6th  7th  

Actual ωk 517.41 697.43 786.28 797.84 886.56 1009.3 2730.6 

Identified ωk 514.49 702.39 782.61 797.77 887.33 1011.8 2743.2 

Identified ηk 9.3e-3 4.8e-3 2.7e-2 1.5e-2 1.4e-2 1.5e-2 1.1e-2 

 

Table 2: Moduli of identified mode shapes and modal masses 

Mode 𝛷1𝑘
∗  𝛷2𝑘

∗  𝛷3𝑘
∗  𝛷4𝑘

∗  𝛷5𝑘
∗  𝛷6𝑘

∗  𝛷7𝑘
∗  𝑚𝑘

∗  

1st  0.001 0.004 0.399 0.010 0.475 0.323 0.309 78.59 

2nd  0.507 0.558 0.106 0.970 0.028 0.242 0.177 192.4 

3rd  0.064 0.106 0.559 0.044 0.523 0.129 0.124 113.4 

4th  0.211 0.396 0.038 0.390 0.050 0.397 0.384 102.2 

5th  0.289 0.938 0.075 0.594 0.108 0.169 0.235 184.6 

6th  0.001 0.012 0.285 0.004 0.009 0.360 0.373 96.40 

7th  0.106 0.348 0.065 0.308 0.064 0.181 0.187 15.31 

 

Table 3: Arguments of identified mode shapes and modal masses (degrees) 

Mode 𝛷1𝑘
∗  𝛷2𝑘

∗  𝛷3𝑘
∗  𝛷4𝑘

∗  𝛷5𝑘
∗  𝛷6𝑘

∗  𝛷7𝑘
∗  𝑚𝑘

∗  

1st  159.69 -178.54 -2.26 173.44 -2.19 177.7 -2.22 -5.05 

2nd  -2.40 177.88 -129.93 -0.97 -27.88 15.48 -19.94 -7.84 

3rd  -122.99 60.88 179.19 106.28 3.54 18.77 131.58 33.70 

4th  0.24 -178.74 49.19 -178.54 -148.48 -177.60 -179.73 6.22 

5th  2.17 0.29 -103.12 177.41 66.01 -20.49 22.68 4.91 

6th  -116.38 0.97 -174.92 -79.39 79.80 -174.06 5.08 2.85 

7th  169.1 -7.58 -108.40 9.56 -30.65 -178.69 177.43 -2.71 

 

 

The modal parameters presented in tables 1 to 3 were used to reproduce the displacement re-

sponses of the foundation. Both the amplitudes and phases of the reproduced responses are com-

pared in Fig. 4 with those obtained numerically from the actual foundation in Fig. 2. The response 

comparisons are in the directions 3, 5 and 7. As can be seen, there is good agreement between the 

actual and reproduced responses. Similar level of agreement was obtained in others directions, alt-

hough they are not presented in this paper.  
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Figure 4: ‘Actual’ and reproduced responses of the foundation; in the directions 3, 5 and 7. 

 

4. Conclusion 

This paper evaluates a quasi-modal parameter based identification technique by identifying the 

equivalent foundation of an RBFS, under the assumption of non-proportional hysteretic damping. 

The identification results show that, the identified natural frequencies of the equivalent foundation 

agree well with the natural frequencies of the actual foundation; and the identified equivalent foun-

dation is able to reproduce displacement responses correctly over the operating frequency range of 

the rotor machinery. Hence, the identified 7 DOF equivalent foundation is considered to provide 

proper substitution for the original foundation. However, the conclusions are based on numerical 

experiments. In an actual rotating machinery, the error in the input measurement data will be larger; 

therefore verification requires further laboratory experimentation.  
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