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In view of the low frequency isolation performance and dimensional limit for the isolator used 

in the vehicle precision instruments, a novel quasi-zero-stiffness (QZS) isolator is designed by 

combining parallelly a negative stiffness disk spring with a linear positive stiffness spring. The 

static characteristics of the disk spring and QZS isolator are studied. The combination of the 

configurative parameters is derived to achieve zero stiffness at the equilibrium position. The 

nonlinear dynamic equations are established for the system under harmonic force and displace-

ment excitations. By using the averaging method, the effects of system imperfections on the 

force transmissibility and the displacement transmissibility are studied. The stability is analysed 

by applying Mathieu equation discriminant method. Compared with the equivalent linear system, 

the system is superior in the low frequency and ultra-low frequency vibration isolation. The re-

sults can offer theoretical guidance in the design and application of the QZS isolator. 

 Keywords: QZS isolator, system imperfection, transmissibility, averaging method 

 

1. Introduction 

Owing to the better vibration isolation performance than linear isolators in low frequency region, 

passive nonlinear vibration isolators have drawn much attention in the scientific and industrial 

fields. Ibrahim introduced the recent advances in passive nonlinear vibration isolators and described 

their main nonlinear characteristics in detail [1]. A comprehensive review on passive nonlinear vi-

bration isolators was presented by Alabuzhev et al. [2], in which a large number of prototypes uti-

lizing negative stiffness structure have resulted in low frequency isolation and excellent support 

capacity. Carrella et al. proposed a high-static-low-dynamic-stiffness isolator by connecting a verti-

cal coil spring and two oblique coil springs [3-5]. Le and Ahn proposed a nonlinear isolator using a 

horizontal spring in series with a bar as negative stiffness structure [6, 7]. Liu et al. carried out a 

research on Euler buckled beam to work as negative stiffness corrector to realize a quasi-zero stiff-

ness isolator [8-10]. Xu et al. proposed a nonlinear magnetic vibration isolator with quasi-zero char-

acteristic [11]. Lan et al. designed a vibration isolator capable of isolating a wide range of loads in 

low frequency region [12]. Zhou et al. investigated a quasi-zero stiffness isolator with cam-roller 

mechanism [13]. 

In this paper we propose a new QZS isolator by combining a disk spring with a vertical linear 

spring. Compared with other negative stiffness elements, taking a disk spring as negative stiffness 

element can offer greater support capacity because the disk spring can bear great load with small 

deflection and supply a certain restoring force at the flatten state. Therefore, the new QZS isolator is 

suitable for being used in the occasion with space limitation for isolators. Meanwhile, its axial non-

linear restoring force enables the isolator to achieve the QZS property at the static equilibrium posi-

tion. 
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2. Static characteristics 

2.1 Disk spring 

A modal schematic of a disk spring is shown in Fig. 1. The disk spring supported at points A, B, 

C and D has an axial deflection x  under the applied force P . The relationship can be expressed by 
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where a  is the external radius, b  is the internal radius, h  is the free height, ct  is the thickness, E  

is the Young’s modulus,   is the Poisson’s ratio, 1e  and 2e  are the distances of the supporting 

points to the center line. Eq. (1) can be simplified as 
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where h h   is the equivalent height and 1 2C e e  is ratio of supporting points. The parameters 

 , M  and N  are defined as 
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Figure 1: Schematic representation of the disk spring. 

With the disk spring moving down from the initial position 0x  , it starts to provide a restoring 

force dF . When the disk spring is in a horizontal line which means ex x h  , the restoring force 

0dF  . Note that the force-displacement curve is symmetric about the point  ,e dex F  as x  changes 

during the range 0,2h   .  Setting this point as the origin of a new vertical displacement coordinate 

u  and defining the following non-dimensional parameters: 
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The non-dimensional restoring force can be expressed as 

3 21 1ˆ ˆ ˆ( )
2 2

dF u u      ,                                                      (5) 

where ˆ ˆu x    and   is the ration between equivalent height and thickness. 

By differentiating Eq. (5) with respect to the non-dimensional displacement û , the non-

dimensional stiffness of the disk spring k̂  can be derived as 

2 23 1ˆ ˆ
2 2

dk u   .                                                        (6) 
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Considering the parameters 1 2 1C e e   and 0  , it can be seen that the non-dimensional 

stiffness is symmetric about ˆ ˆ 0eu u   and gets the minimum value 2

min
ˆ 2dk    at this posi-

tion. To achieve the continuous negative stiffness region, the parameters should meet the condition 

2   . And the continuous negative stiffness region can be derived as 

 2 2ˆ ( 2 ) 3, ( 2 ) 3u        .                                             (7) 

Note that the minimum value 
min

ˆ
dk  and the negative stiffness region are related with the parame-

ters   and C . The disk spring owns smaller 
min

ˆ
dk  and larger negative stiffness region with increas-

ing   and decreasing C . 

2.2 The QZS isolator 

The schematic of the proposed QZS isolator is shown in Fig. 2. A disk spring acting as the nega-

tive stiffness structure and a vertical linear spring lk  are connected to the isolated mass m . Ignoring 

the isolated mass, the restoring force of the QZS isolator can be expressed by 
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where lF  and dF  are the restoring forces of the linear spring and the disk spring at axial direction 

separately. 

 

 

Figure 2: Schematic representation of the QZS isolator. 

The non-dimensional restoring force of the QZS isolator can be derived as 
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where ˆ ˆ ( )r r v cF F k t  and  3 2 2
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 is defined as the stiffness ratio between the 

disk spring and the linear spring. 

By differentiating Eq. (9) with respect to the non-dimensional displacement û , the non-

dimensional stiffness of the QZS isolator can be derived as 

2 23 1ˆ ˆ1
2 2

k u 
 
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 

,                                                  (10) 

where ˆ
vk k k . 

When the disk spring is horizontal, i.e. ˆ ˆ 0eu u  , the non-dimensional stiffness of the isolator is 

symmetric about the position and has the minimum value. In operation, the isolator is prospected to 

own zero stiffness and reach static equilibrium at this position with an appropriate mass. By setting 

Eq. (10) to zero at ˆ ˆ 0eu u  , the desired stiffness ratio can be derived by 
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Fig. 3 shows the non-dimensional stiffness-displacement curves with different   and C . It can 

be seen that the QZS isolator possesses smaller stiffness in the neighborhood of the static equilibri-

um position and larger displacements of smaller stiffness with increasing   and decreasing C . 

 

 

Figure 3: Non-dimensional stiffness characteristics of the QZS isolator. 

3. Dynamic characteristics 

3.1 Manuscript Title Dynamic modeling and solution 

It is prospected that QZS isolator loaded with an appropriate mass can keep balance at the static 

equilibrium position ˆ ˆ 0eu u  . And the static equilibrium position is also a zero stiffness position. 

Based on Eqs. (9) and (11), the quantity of the mass should satisfy the condition 
3

2 2
v cmg k t
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.                                                           (12) 

According to Fig. 2, two types of excitations are considered: one is the harmonic force excitation 

 cosf F t  on the mass; the other one is the harmonic displacement excitation  cosz Z t  

on the base. By using the Newton’s second law of motion, one can achieve the dynamic equations 

separately for the two types of excitations given above 

 1 cosrmu cu F mg F t    ,  2

2 cosrmy cy F mg m Z t     ,         (13a, b) 

where y u z   is the relative displacement between the base and the mass, 1rF  and 2rF  are the 

restoring forces under the two types of excitations. Combining Eq. (12) and introducing the non- 

dimensional parameters as follows: 
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Eq. (13) can be rewritten as the non-dimensional form: 

 3 ˆˆ ˆ ˆ2 cosu u u F       ,  3 2 ˆˆ ˆ ˆ2 cosy y y Z       ,         (15a, b) 

where  21 2     and ( ) ( )d d  .  

Eq. (15) can be expressed by a uniform dynamic equation for simplicity: 

3ˆ ˆ ˆ2 cos( )v v v        ,                                          (16) 

where   is the amplitude of the harmonic excitations. For the force excitation: 1  , F̂  ; For 

the displacement excitation, 
2   , Ẑ  . 

By removing the disk spring, the equivalent linear system (ELS) to the QZS isolator can be ob-

tained. The dynamic equation of the ELS is 

ˆ ˆ ˆ2 cos( )v v v       .                                                (17) 

Then the amplitude of the steady-state response for ELS can be derived as 
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As shown in Eq. (16), it can be seen that the QZS system is a Duffing oscillator under symmetric 

excitation. The average method is employed to get the approximate steady-state solution. The 

steady-state solution of the nonlinear system can be assumed to be 

 1
ˆ cosv A     ,  1

ˆ sinv A       ,                            (19a, b) 

where the amplitude of the harmonic term A  and the phase   are related with the time  .  

Then the following equations can be derived as 
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Letting 0A    , which physically implies that the time-averaged rates of change of ampli-

tude and phase angle vanish, one can get 
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Combining Eqs. (21a, b), one can get the implicit amplitude frequency equation of the QZS 

system 
2
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3.2 Transmissibility 

The key indexes to evaluate the performance of an isolator are the force transmissibility for the 

force excitation and the absolute displacement transmissibility for the displacement excitation.  

The force transmissibility is defined as the ratio between the amplitude of the non-dimensional 

dynamic force transmitted to the base and that of the non-dimensional excitation force. It can be 

expressed by 
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t
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The absolute displacement transmissibility is defined as the ratio between the amplitude of the 

non-dimensional absolute displacement of the mass and non-dimensional excitation displacement. It 

is given by 
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where  cos   is defined by Eq. (21b). 

The force and absolute displacement transmissibilities of the ELS have the same expression as [3] 
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4. Effects of the system imperfection on the isolation performance 

Based on the above analysis, the transmissibility curves with different system imperfections are 

plotted in Figs. 4-6. Fig. 4 shows the effects of the excitation amplitude on the isolation perfor-

mance. It can be seen that the QZS system has a lower starting frequency and a larger frequency 
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range of isolation effects than the ELS. Different from that of the ELS independent of the excitation 

amplitude, the peak amplitude of the transmissibilities and the corresponding resonance frequency 

of the QZS system decreases as the excitation amplitude decreases, which means that the QZS sys-

tem has superior isolation performance in low frequency range than the ELS. 

 

 

 

Figure 4: Effects of the excitation amplitude on the isolation performance. ‘red line’ the QZS system; ‘blue 

line’ the ELS; ‘green dotted line’ unstable solutions; ‘  ’peak amplitude of transmissibility. 

Fig. 5 shows the effects of the damping ratio on the isolation performance. As the damping ratio 

increases, the peak amplitudes of the transmissibilities decrease and the transmissibilities in higher 

frequency range increase for the two systems. Note that the QZS system can get smaller resonance 

frequency and unstable region with increasing damping ratio. If the damping ratio is large enough, 

the peak amplitudes of the transmissibilities and unstable regions of the QZS system will not occur. 

 

 

 

Figure 5: Effects of the damping ratio on the isolation performance. ‘red line’ the QZS system; ‘blue line’ the 

ELS; ‘green dotted line’ unstable solutions; ‘  ’peak amplitude of transmissibility. 

Fig. 6 shows the effects of the nonlinear term   on the isolation performance. It can be found 

that the effects of the nonlinear term   are similar with that of the excitation amplitude. And the 

effects are obvious in the neighborhood of the resonance frequency. The starting frequency of isola-
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tion effects, the peak amplitudes of the transmissibilities and the unstable region get smaller as he 

nonlinear term   decreases, which means that a smaller nonlinear term   leads to a better isola-

tion performance in low frequency range. 

 

 

 

Figure 6: Effects of the nonlinear term   on the isolation performance. ‘red line’ the QZS system; ‘blue line’ 

the ELS; ‘green dotted line’ unstable solutions; ‘  ’peak amplitude of transmissibility. 

5. Stability analysis 

On account of the appearance of multiple values for the steady-state solution, the Mathieu equa-

tion discriminant method is used to study the stability of the steady-state solution. Superposing a 

small non-dimensional perturbation  ̂   to the steady-state solution, one can get  

   ˆˆ cosv A        .                                                      (26) 

By substituting Eq. (26) into Eq. (16), the equation for the perturbation can be derived as 
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Supposing that 

   1 2cos sinE E    ,                                                (28) 

and substituting Eq. (28) into Eq. (27), one can achieve that 
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Neglecting the high order harmonic term and setting the coefficients of  cos   and  sin   to 

zero, one can get the following equations 
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When the determinant of the matrix in Eq. (30) vanishes, the boundary between the stable and 

unstable regions can be achieved as 

 

 

Increasing 
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 4 2 2 2 4

1 1

27
4 3 0

16
A A         .                                           (31) 

The unstable region occurs when 0  , which is plotted by green dotted line in Figs. 4-6. 

6. Conclusion 

In this paper, we introduce the theoretical design and characteristics analysis of a novel QZS iso-

lator. The QZS isolator is developed by adding a disk spring with negative stiffness to a vertical 

linear spring with positive stiffness. The vibration isolation performances of the QZS system and its 

ELS are studied under different system imperfections, such as excitation amplitude, damping ratio, 

nonlinear term et al. By decreasing the excitation amplitude and the nonlinear term, and increasing 

the damping ratio appropriately, the QZS system can achieve a lower starting frequency of isolation 

effects and smaller peak amplitudes of the transmissibilities. The conclusion can be drawn that the 

QZS system can exhibit superior isolation performance in low frequency range compared with its 

ELS. 
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