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Rolling bearing diagnostics still represents an open research field, especially when distributed 

faults are looked for rather than localized faults. In fact, distributed faults are typically due to a 

progressive growth of surface wear. A low-quality manufacturing, in terms of material or process, 

can even constitute another cause of distributed fault or representing an accelerating factor for the 

fault development. Classical strategies adopted for diagnosing localized faults can barely recog-

nize this type of faults. However, certain approaches based on the extraction of the spectral com-

ponents building the vibrational signature of the bearing can be exploited to diagnose both local-

ized and distributed faults. This paper aims at presenting an approach that can be exploited for 

this purpose. The algorithm is based on a combined use of Empirical Mode Decomposition 

(EMD) and Independent Component Analysis (ICA). EMD is exploited as a pre-processing step 

to decompose the original signal into multiple time-series, the so-called intrinsic mode functions. 

These time series are then processed by ICA in order to extract those components that can be 

related to the fault. The non-stationary content of the distributed fault is taken into account by 

both methods. The effectiveness of the whole procedure in tackling the distributed faults diagnos-

tic issue is presented on simulated data. A sensitivity analysis is presented as well. 
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1. Introduction 

The identification of distributed faults in rolling bearings still represents an open research field for 

those working on machine diagnostics. The reason is twofold: it is indeed important to understand if 

a progressive growth of the bearing surface wear is taking place, e.g. because of a low-quality man-

ufacturing in terms of material or process, in order to schedule maintenance/repair interventions; clas-

sical diagnostics strategies developed for localized faults cannot be straightforwardly applied to these 

defects and, therefore, tailored approaches should be developed. Methods based on the ciclostationary 

[1] characteristics of the bearing signals have been proposed during the years (see, for instance, 

[2][3]). Despite powerful, these approaches need the knowledge of a non-damaged status of the bear-

ing, which is, sometimes, a non-trivial information to collect. On the contrary, when dealing with 

localized faults, a more straightforward identification of the damage is possible, since it can be in-

ferred by the localization of specific deterministic frequencies on the vibration/acoustic signature of 

the bearing. With these premises, it is quite natural to claim that a signal processing technique which 

could provide the same easiness of use for distributed faults as for localized faults would represent 

an interesting alternative to cyclostationarity-based methods.  

The approach proposed in this paper aims to answer to this need. Developed by Miao et al. [4], the 

approach, which utilises Independent Component Analysis (ICA) [5] as processing of signals previ-

ously decomposed by the Empirical Mode Decomposition (EMD) method, was already successfully 

exploited by Martarelli et al. [6] to identify localized faults in rolling bearing in non-destructive vibro-

acoustic tests. Since both EMD and ICA can deal with non-stationary phenomena, this approach can 

represent a good candidate to be tested for the identification of distributed faults. In this sense, the 

aim of this paper is to check the exploitability and the sensitivity of an EMD-ICA based processing 

approach for the diagnosis of a distributed fault whose severity is progressively growing. Since the 

evolution of surface wear, giving rise to the fault, is not easy to reproduce in a controlled way, the 

technique is tested on a simulated vibration signal taking advantage of a model developed by D’Elia 

et al. [7]. A comparison of the performance with a standard technique as the Spectral Kurtosis [8] is 

also presented.  

The paper is structured as follows: section 2 will give an outline of the method, while section 3 

will present the main characteristic of the model utilised to produce the virtual signal; section 4 will 

present the main analysis aiming at checking the suitability of the approach for the identification of 

faulted bearings, section 5 will report the main conclusions. 

2. EMD-ICA method theoretical description 

A detailed discussion on EMD is out the scope of this paper. For that, the interested reader might 

refer to the work of Rilling et al. [9]. However, for understanding the whole procedure, some key 

concepts should be provided. EMD is based on the assumption that every signal x(t) consists of sim-

pler intrinsic modes of oscillation, the so called Intrinsic Mode Functions (IMFs). Mathematically, 

this translates in  

 𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑁(𝑡)𝑁
𝑖=1  (1) 

where 𝑐𝑖(𝑡) represents each IMF and the term 𝑟𝑁(𝑡) is the residual term of the decomposition.  

The IMFs should satisfy two conditions: 

­ the number of extrema and zero crossings may differ by no more than one; 

­ the local mean is zero. 

EMD is also an iterative process that continuously seeks for the best IMFs approximating the original 

signal. However, this iterative process does not stop until the residual becomes a monotonic function 

or a constant from which no more IMF can be extracted. 

The IMFs found from the sifting steps can be further processed via the Fast Fourier Transform and 

mapped on the basis of an energetic criterion in frequency domain: 
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 𝐼𝑖 =
𝐸𝑆𝑆𝑖

∑ 𝐸𝑆𝑆𝑖𝑖
 (2) 

 𝐸𝑆𝑆𝑖 = ∑ (𝐸𝑆𝑖(𝑓))2
𝑓  (3) 

 𝐸𝑆𝑖 = |∫ 𝑐𝑖(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
+∞

−∞
|   . (4) 

In Equations form (2) to (4) the variable i goes from 1 to N’, with N’ being the number of IMFs 

extracted. Eq. (3) is the representation of the spectrum energy for the i-th component and Eq. (4) is 

the Fourier Transform magnitude of the signal ci(t). The IMFs with the m largest 𝐼𝑖 values are selected 

for further construction of the ICA model.  

As EMD, also ICA is a processing technique that aims to separate a signal (in typical applications 

a multivariate signal) into subcomponents. The main difference among the two methods is related to 

the fact that, in ICA, the subcomponents are assumed to be non-Gaussian and statistically independ-

ent. This holding, the aim of an ICA algorithm is, starting from the problem   

 𝐱 = 𝐀𝐬 (5) 

where: 

­ x is the observation vector, 

­ A is the mixing matrix, 

­ s is the source vector, 

to find an unmixing matrix 𝐖 ≈ 𝐀−𝟏 so that 𝐬 ≈ 𝐲 = 𝐖𝐱. Depending on the time dependency nature 

of the mixing, time invariance or time variance, i.e. including or not time delays/echoes, the problem 

in Eq. (5) is said to be instantaneous or convolutive. When dealing with bearings, unfortunately, the 

mixture is to be considered convolutive and techniques which are able to deal also with this kind of 

problem has to be considered. The FastICA algorithm [5] is one of them. FastICA seeks those inde-

pendent components maximising the Negentropy function J, which can be efficiently described by 

the proportionality relation: 

 𝐽(𝑦) ∝ [𝐸{𝐺(𝑦)} − 𝐸{𝐺(𝜈)}]2 (6) 

where E is the expectation operator and ν is a standard gaussian zero-mean unitary-variance vari-

able. Indeed, maximising the non-gaussianity of each independent component implies compliance 

with the Central Limit theorem, which states that the distribution of the sum of a large number of 

independent random variables tends to be a Gaussian distribution. The G function in Eq. (6) is a non-

quadratic non-linear function. Different functions can be exploited as G function: the hyperbolic tan-

gent or the skewness one are some, among others.  

The IMFs can be processed by FastICA building the x vector; however, a centring and whitening 

operation is performed before applying the FastICA algorithm. If the original signal is carrying the 

damage information then it should be recognisable among the Independent Components (ICs) ob-

tained from the FastICA processing. 

3. Distributed faulty signal synthesis model 

The easiest way to assess the capability of a processing method to deal with certain types of dam-

ages is to rely on a mathematical model, since it gives the possibility to create inputs with known 

characteristics in a fully controlled manner. In this paper, the model developed by D’Elia et al. [7] is 

exploited for this purpose. The model can reproduce both localized and distributed faults and takes 

into account non-stationarity as well. Concentrating on the distributed fault model, it should be re-

called that this vibration signal model is a mixture of a deterministic term - Eq. (7) and (8) - and a 

ciclostationary term – Eq. (9). D’Elia et al. describe both term in the angular domain 

 𝑝𝑟𝑜𝑡(𝜃) = 𝑞𝑟𝑜𝑡𝑐𝑜𝑠 (
𝑓𝑐

𝑓𝑐
𝜃 +

 𝑓𝑑

𝑓𝑐
∫ 𝑐𝑜𝑠 (

𝑓𝑚

𝑓𝑐
𝜃) 𝑑𝜃) (7) 

 𝑝𝑠𝑡𝑖𝑓𝑓(𝜃) = 𝑞𝑠𝑡𝑖𝑓𝑓𝑐𝑜𝑠 (
𝑓𝑐

𝑓𝑐
𝜏𝑠𝑡𝑖𝑓𝑓𝜃 +

 𝑓𝑑

𝑓𝑐
∫ 𝑐𝑜𝑠 (

𝑓𝑚

𝑓𝑐
𝜃) 𝑑𝜃)  (8) 
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 𝑞(𝜃) = 1 + 𝑞𝐹𝑎𝑢𝑙𝑡 𝑐𝑜𝑠 (
𝑓𝑐

𝑓𝑐
𝜏𝑓𝑎𝑢𝑙𝑡𝜃 +

 𝑓𝑑

𝑓𝑐𝑛𝑟
𝜏𝑓𝑎𝑢𝑙𝑡 ∫ 𝑐𝑜𝑠 (

𝑓𝑚

𝑓𝑐𝑛𝑟
𝜏𝑓𝑎𝑢𝑙𝑡𝜃) 𝑑𝜃)  (9) 

 

thus generating the signal, after moving to the time domain by the use of the rotational velocity in-

formation, as: 

 𝑥𝑑(𝑡) = prot(𝑡) + 𝑝𝑠𝑡𝑖𝑓𝑓(𝑡) + 𝑞(𝑡)𝑚(𝑡) + 𝑛(𝑡) = 𝑝(𝑡) + 𝐵(𝑡) + 𝑛(𝑡)   . (10) 

In Eq. (10), p(t) addresses the deterministic component, B(t) the ciclostationary component and n(t) 

represents a noise term; the ciclostationary component B(t) is a random noise modulated by the fault 

frequency - time domain interpolation of the term calculated in Eq. (9). In all equations from Eq. (7) 

to Eq.(9) the following notation is used: 

­ 𝑓𝑐 : carrier component of the shaft speed; 

­ 𝑓𝑑  : frequency deviation of the shaft speed; 

­ 𝑓𝑚 : modulation frequency of the shaft speed; 

­ 𝑞𝑟𝑜𝑡, 𝑞𝑠𝑡𝑖𝑓𝑓 : amplitude weights of the deterministic components; 

­ 𝜏𝑠𝑡𝑖𝑓𝑓 : geometrical bearing parameter obtained as 𝜏𝑠𝑡𝑖𝑓𝑓 =
𝑛𝑟

2
(1 −

𝑑

𝐷
𝑐𝑜𝑠(𝛽)); 

­ 𝜏𝑓𝑎𝑢𝑙𝑡 : geometrical parameter that can be expressed, for an inner-race fault, as 

 𝜏𝑓𝑎𝑢𝑙𝑡 =
𝑛𝑟

2
(1 +

𝑑

𝐷
𝑐𝑜𝑠(𝛽)); 

­ 𝑛𝑟 : number of rolling elements; 

­ 𝑑 : rolling element diameter in mm; 

­ 𝐷 : rolling element pitch circle diameter in mm; 

­ 𝛽: contact angle in deg. 

 

An IC boasting a frequency linked to 𝜏𝑓𝑎𝑢𝑙𝑡, eventually together with some of its harmonics, is a clear 

symptom of the damage presence, whether or not the damage itself is a distributed or a localized fault. 

4. Diagnostic method validation 

The efficiency of the EMD-ICA method has been tested in relation to the parameters which might 

influence its performance the most: the SNR, the frequency deviation of the rotation frequency (fd) 

and the level of distribution of the defect given by the amplitude (qfault) of the function modulating 

the ciclostationary component of the signal. It can be expected that, increasing the noise occurring in 

the signal, the rotation frequency deviation and the extension of the defect, i.e. lowering the SNR, 

increasing fd and decreasing qfault, the identification of the frequency linked to the damage would be 

more difficult. However, the EMD-ICA method will suffer less than a deterministic method as the 

diagnostic technique based on the conventional Spectral Kurtosis. In order to test this, a set of 128 

signals was synthetized. The signals referred to a damaged inner race producing a characteristic fre-

quency of 1270 Hz.  The SNR, fd and qfault were varied as reported in Table 1. Both the methods were 

tested on the same set of signals in order to assess their capability in identifying the frequency related 

to the damage.  

Table 1: Value assumed by parameters  

Parameter  Value assumed 

SNR [dB] 5  10 15 20 

fd [Hz] 5  10 15 20 

qfault [adimensional] 0.01 0.05 0.1 1 

 

As an example, in Figure 1 the envelope spectra obtained by filtering the signal on the basis of the 

Spectral Kurtosis are reported for an SNR of 15 dB, a frequency deviation of 5 Hz and for the four 
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values of qfault. It is evident that for low qfault (0.01 and 0.05), i.e. for well-developed defect, the Spec-

tral Kurtosis suffers on identifying the optimal filter level. In fact, the calculated filter range does not 

even include the defect frequency. For qfault equal to 1 the defect is localized and the Spectral Kurtosis 

works well so that the filter level identified allows to highlight not only the defect characteristic fre-

quency but its first harmonic too.   

 

  
(a) SNR 15 dB, fd 5 Hz, qfault 0.01 (b) SNR 15 dB, fd 5 Hz, qfault 0.05 

  
(c) SNR 15 dB, fd 5 Hz, qfault 0.1 (d) SNR 15 dB, fd 5 Hz, qfault 1 

Figure 1: Envelope spectrum of filtered signals at different defect distribution levels. 

 

Figure 2: First six ICAs spectra for qfault 0.01. 
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Figure 3: First six ICAs spectra for qfault 0.05. 

 

 

Figure 4: First six ICAs spectra for qfault 0.1. 
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Figure 5: First six ICAs spectra for qfault 1. 

The same signals analysed with the Spectral Kurtosis method have been analysed with the EMD-

ICA one and the ICA spectra are given from Figure 2 to Figure 5. Even though the ICA spectra 

obtained for the well-developed defect (qfault 0.01, Figure 2) present a high noise level the character-

istic frequency is evident in the third IC. By increasing qfault, the characteristic frequency becomes 

more and more evident in all ICs.  

A summary of the cases when Spectral Kurtosis (SK) and EMD-ICA methods are working 

properly is reported in Table 2, where only fd and qfault are considered because the SNR does not 

influence both the methods. 

 

Table 2: Working condition of EMD-ICA method in comparison with the Spectral Kurtosis one 

 

                fd [Hz] 

       qfault 

5 10 15 20 

0.01 SK              

EMD-ICA   

SK              

EMD-ICA  

SK              

EMD-ICA  

SK              

EMD-ICA  

0.05 SK              

EMD-ICA   

SK              

EMD-ICA  

SK              

EMD-ICA  

SK              

EMD-ICA  

0.1 SK              

EMD-ICA   

SK              

EMD-ICA  

SK              

EMD-ICA  

SK              

EMD-ICA  

1 SK              

EMD-ICA   

SK              

EMD-ICA  

SK              

EMD-ICA  

SK              

EMD-ICA  

 

5. Conclusions 

The paper was intended to show a diagnostic procedure targeted to the identification of distributed 

faults in rolling bearing. The method proposed is based on a hierarchical use of EMD and ICA, in 

which ICA is applied on IMFs obtained by the siftening process produced by EMD. A sensitivity 

analysis to noise contamination, shaft speed variation and fault extension was performed in order to 

identify the parameter mostly affecting the performance of the approach. In order to perform this 

analysis, a model derived to synthetize distributed faults in rolling bearings running in non-stationary 

conditions was exploited. The method resulted to be robust to noise pollution, as well as to shaft speed 

variation. The fault extension was found to be the parameter affecting the most the performance of 

the method, even though the spectral characteristics linked to the fault in the inner race of the bearing 

was identified in all conditions tested. The EMD-ICA method proposed thus represents a valuable 

tool to assess the health status of rolling bearings. 
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