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Speech enhancement is indispensable for human-to-machine speech interfaces, because speech
signals are extremely fragile against acoustical interferences. Spatial filtering, that is, beamform-
ing, is one of the popular solutions using multiple microphones. In the case of linear beamformers,
a number of microphones are required to make the main lobe sharp at the desired direction. On
the other hand, non-linear beamformers efficiently form the sharp main lobe compared with the
linear beamformers. Kobatake et al. proposed a pioneering non-linear beamformer with a neural
network. This method considered the narrowband optimization of the network structure, and suc-
ceeded in both achieving a sharper main lobe and decreasing grating lobes. Narrowband non-
linear beamformers have been steadily developed in the field of antenna and propagation. In this
paper, a non-linear broadband beamformer with a deep neural network is proposed for speech
enhancement. The proposed beamformer substitute a deep neural network for a conventional neu-
ral network, and non-equally-spaced microphone arrangement is employed for making grating
lobes disappear. It is confirmed that the proposed beamformer can achieve ideal beam-pattern
under a real environment.
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1. Introduction

Beamforming has been one of important issues in acoustical signal processing [1] as well as radar
and radio applications. It enables to detect and enhance target signals in adverse conditions. A wide
variety of beamformers have proposed for several decades. The traditional beamformers have been
analytically and adaptively designed such as a delay-and-sum beamformer [2] and the AMROR [3].
In the field of information processing, machine learning with huge amount of training data is a rep-
resentative approach in non-linear optimization problems. A neural network can be an alternative
approach to optimizing the beamformers. Kobatake et al. proposed a pioneering superdirective beam-
former with a three-layered neural network structure [4]. Neural network-based beamformers became
popular for narrow-band antenna applications [5-7]. It is, however, difficult for those beamformers
to deal with wide-band acoustical signals, although various non-linear beamformers with the learning
schemes based on neural networks have been investigated for acoustical applications [8-10].

In this paper, an advanced delay-and-sum beamformer is proposed with a deep neural network and
an optimized microphone arrangement. It is expected to further achieve superdirectivity by using a
four-layered neural network instead of the conventional three-layered neural network. There is an-
other annoying problem of the appearance of grating lobes, that is, spatial aliasing in beamforming.
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Figure 1: Beam-patterns in spatial and frequency domains for delay-and-sum beamformer (left panel) and
non-linear beamformer with neural network (right panel).

The spatial aliasing is caused by spatial sampling using a microphone array, and is theoretically ex-
plained based on the wavelength of the signal and the spacing of neighbouring microphones. The
proposed beamformer employs a carefully designed microphone array, of which microphone spacing
is optimized and three nesting sub-arrays achieve sub-band beamforming. In optimizing the proposed
beamformer, it is also important to prepare suitable training data. In this paper, wide-band random
noises and diffused noises are used for training the beamformer. Feasibility of the proposed beam-
former is confirmed under a real environment.

2. Conventional beamformers

The delay-and-sum beamforming is a traditional means of spatial filtering [1, 2]. It can be achieved
by linear signal processing, where multiple observed signals are phase-adjusted and summed up, and
can be simply implemented both in analogue and digital manners. A target signal coming from a
desired direction is not distorted by delay-and-sum beamforming. Those advantages have made de-
lay-and-sum beamformers popular in acoustical signal processing. On the other hand, a delay-and-
sum beamformer is not superior in efficiency to state-of-the-art beamformers. A delay-and-sum
beamformer needs a number of microphones to form a sharp main love, especially in the low fre-
quency range. It controls only the main lobe in the directivity pattern, and does not turn attention to
the directions except the look direction. It means that the target signal is emphasized by synchronous
addition and signals coming from the undesired directions are weaken by phase interference.

A filter-and-sum beamformer introduces a FIR filter into the phase-adjustment stage of delay-and-
sum beamforming. The filter-and-sum beamforming is also linear in the viewpoint of signal pro-
cessing, although it allows beamformers to control side lobes. Kobatake et al. proposed a novel frame-
work of non-linear beamforming, where a three-layered neural network was employed to achieve
superdirectivity. The non-linear beamforming yielded the distortion on the target signal, but its su-
perdirectivity is more advantageous compared with its defects.

Figure 1 shows the beam-patterns in spatial and frequency domains for the delay-and-sum beam-
former and the non-linear beamformer with a neural network, respectively. Eight microphones are
equally-spaced with the spacing of 0.084 m, and the target signal comes from 0 degree, that is, the
front of the array. In Fig. 1, the non-linear beamformer is superior in the sharpness of the main lobe
to the delay-and-sum beamformer, although both beamformers have grating lobes in high frequency
due to spatial aliasing.
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3. Proposed non-linear broadband beamformer

3.1 Overview

A non-linear broadband beamformer is proposed in order to achieve further superdirectivity
and reduce grating lobes. The grating lobes appear in the specific frequencies, which can be theoret-
ically determined due to the relationship between the wavelength of the signal and the spacing of the
neighbouring microphones. This problem can be solved by carefully designing the microphone ar-
rangement. The proposed beamformer also aims at sharpening the main lobe using a deep neural
network, which substitutes for the conventional three-layered neural network.

3.2 Optimization of microphone arrangement

A microphone array must be carefully designed to prevent spatial aliasing in the target fre-
quency range. It is well known that the sub-band beamforming with the sub-arrays, which have dif-
ferent microphone spacing for each sub-array, solves the problem on spatial aliasing. A nesting ar-
rangement of microphones is a well-known solution aiming at reducing of the array size and making
the best use of microphones. Flanagan ef al. designed a large-scale microphone array, where micro-
phones are orderly arranged at the interval of the octave scale, that is, “power of two™ [2].

The authors have also proposed the efficient nesting microphone arrangement [11]. It is found
that the microphone arrangement according to the “power of three” rule is superior in signal enhance-
ment to the octave arrangement. The “power of three” arrangement, however, requires a wider mi-
crophone array compared to the octave array. Therefore, the proposed beamformer employs the “mul-
tiple of three” rule. The proposed microphone array consists of three nesting sub-arrays: Sub-array 1
with the microphone spacing of 15.75 cm up to 1.5 kHz, Sub-array 2 with the spacing of 5.25 cm
from 1.5 kHz to 3 kHz, and Sub-array 3 with the spacing of 1.75 cm over 3 kHz. Microphones.

3.3 Optimization of channel weight using deep neural network

The proposed beamformer prepares the channel-dependent weight for non-linear beamforming, and
the weights are optimized using a deep neural network. A preliminary experiment with various depths
of multiple-layered neural networks suggests that a conventional three-layered neural network is not
sufficient to optimize the channel-dependent weights for the 8-ch non-equally-spaced microphone
array, which is described in Section 3.2. Assuming that enough amount of training data can be pre-
pared, a deep neural network with more layers achieves superdirectivity, but it might cause overfitting
to the training data and requires immense costs for training. Therefore, a four-layered neural network
is employed in optimizing the channel weights.

The proposed beamformer trains the channel-dependent weights for each sub-array by supervised
learning. A set of wide-band random noises and diffused noises are prepared as training data for the
observations of the microphone arrays, where the signals come from 0 degree to 90 degrees at the
interval of 10 degrees. The supervised signals are the training data itself and zero sequences for the
signals coming from the desired direction and undesired directions, respectively. The back-propaga-
tion algorithm is used for training the neural network, where initial channel-dependent weights are
randomly set in [-1, 1].
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Table 1: Data set for training the proposed non-linear beamformer

(directional random noise) : (diffused random noise)
Training data set 1 100:0
Training data set 2 90:10, 100:0
Training data set 3 80:20, 90:10, 100:0
Training data set 4 70:30, 80:20, 90:10, 100:0

Gan{aB]

Figure 2: Beam-patterns of the proposed beamformers with the training data set 1 (upper left panel), training
data set 2 (upper right panel), training data set 3 (lower left panel), and training data set 4 (lower right panel).

4. Performance evaluation

Performance of the proposed beamformer is evaluated under a soundproofed room. Both direc-
tional wide-band random noises in [300 Hz, 24,000 Hz] and diffused versions of those noises are
prepared as the training data, although the referenced conventional non-linear beamformer with the
three-layered neural network [4] was trained with the sinusoidal signal. Four training data sets are
prepared as shown in Table 1. Resultant beam-patterns obtained with the different training data sets
are shown in Fig. 2. It is confirmed that the beam-patterns vary depending on the training data.

Feasibility of the proposed beamformer is also investigated in the viewpoint of noise reduction.
Signal-to-noise ratio and spectral distortion in [300 Hz, 3,400 Hz] are employed as objective distor-
tion measures.
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Figure 3: Improvements of signal-to-noise ratio and spectral distortion by spatial filtering with various beam-
formers in upper and lower panels, respectively.

Figure 3 gives the improvements of signal-to-noise ratio and spectral distortion by spatial fil-
tering with various beamformers: Delay-and-sum beamformers with equally-spaced and non-equally-
spaced microphone arrangements (D&S-BF and Smoothed D&S-BF), non-linear beamformers with
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the equally-spaced microphones trained by three-layered and four-layered neural networks using si-
nusoid signals (NN-BF and DNN-BF), non-linear beamformers with the equally-spaced microphones
trained by four-layered neural networks with sinusoid signals (Smoothed DNN-BF), and the proposed
beamformers with different training sets. The proposed beamformer is superior to conventional beam-
formers, and the suitable training data set is different according to the distortion measures. It is nec-
essary to further investigate the relation between training data and noise reduction performance.

5. Conclusions

A non-linear broadband beamformer is proposed to simultaneously achieve superdirectivity and
prevent the occurrence of grating lobes. The channel-dependent weights in the four-layered neural
network are optimized with directional and diffused wide-band random noises. The non-equally-
spaced microphone arrangement contributes to make the grating lobes disappear. An experiment un-
der a real environment have verified the feasibility of the proposed method compared with conven-
tional linear and non-linear beamformers trained with sinusoidal signals. Future works include the
performance evaluation of the proposed beamformer in complex acoustic scenes with reverberation.
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