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Introduc t ion

Structural vibration and transmission of waves in the vertical direction, from
floor to floor. often give rise to low frequency vibration and noise problems
in multi-storey buildings of lightweight construction_(Figure 1). This paper
discusses harmonic vibration and wave ,
propagation characteristics at the “hum-II
lower audio frequencies. up to about ' if
300 1-1:. of a simplified model of a
single vertical transmission path of
a modular building structure. The mo-
del, which has a two-dimensional con-
figuration similar to that of Figure
1a, consists of a tall uniform column
loaded at regular intervals (L) with
identical transverse beams. These re-
present in an idealized form parts of
multi-mndal floor structures.

 

Pig. 1. Examples of idealized building
structures.

The one-dimensional transmission path may be devided into a number of identical
structural units or "periodic elements" joined together to form a so—called
"periodic structure" (Figure 2a). The pe-
riodic elenvt consists of the wave-carry-
ing component. calmnn (C) of length L. and
of the load component. the transverse beam,
which is devided into two "half-loads“ (B)
and (D) for convenience in analysis [1].

Outline of the theory

It is well-known that free harmonic wave
propagation in an infinite. periodic '
structure is possible only in certain
frequency bands known as "propagation
zones". e.g. [-2.3]. The frequency ranges
in which wave propagation and associated
transport of vibrational energy is 2%
possible are known as "attenuation zones".
These characteristics are described by 3

lb)

 

complex frequency-dependent quantity, Fig. 2. (a) Block diagram of s perio-
- the "propagation constant" u=u +iu , dic structure with multi-
which relaghe) the harmonic displacement coupled elements; (b) a

vectors qe (and forces) at positions single element. »

 

“) This work was conducted while the author was at the Institute of Sound and
Vibration Research. University of Southampton. England. The work was support-
ed Einancially by the Danish Council for Scientific and Industrial Research.
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(E) in adjacent elements

NEH-)2”: = e "Romano: . (l)
The variation with frequency of the real part (u ) and the imaginary part (u )
of the propagation constant evaluated for longitudinal~(i.e. vertical) wave mo-
tion in the structure is shown in Figure 3. '
The "attenuation constant" u expresses the
decay rate in wave amplitude per element and
the "phase constant" p . describes the phase
change of the wave per element. From equa-
tion (1) it is clear that a propagation zone
exists provided the propagation constant is
purely imaginary, i.e. when uR=O.

The vibration characteristics of the element
(Figure 2b) can be defined by its "recept-
ance" functions. Transfer reteptance a ,
for.e ample, is the harmonic displacemeht

at end(£) per unit harmonic force
at end(r). with n degrees of free-

gfim at the ends the.displacenent vector
q is thus given by thematrig products of
the nxn receptgnce matrices a and the
force vectors F, i.e.

122$“
Fig. 3. (a) The real part uR and

(b) the imaginary part u
of the propagation constint
for longitudinal waves.

_ _ _ n = 0.001.
= F + F

_i 21—1 Lr r (2)

qr E rEFE , rrFr '

Continuity of coordinates. equilibrium of force and the periodic property (equa-
tion (1)) can be applied to relate qt and qr as well as the forces, which yield

' ‘ '” F ""— <3)qree ql and rfi-e F1

From equations (2) and (3) a general system equation can be derived. [3]

hum"%%gflflwflW)'mhfiflnmmwir=fiw@flfi=0. (U

The solutions of this are, at any frequency, given by the particular values of u
which satisfy the equation “(LIAM = 0, from which n pairs (run) of propagation
constants can be found.

Discussion of numerical results

Free harmonic longitudinal waves can propagate (i.e. without attenuuliuu) in the
major part of the entire frequency range considered. The corresponding prop. zones
(Pzi) are individually succeeded by attenuation zones of a distinct "resonant"
appearance. The high attenuation in these relatively narrow zones is created by
the modal characteristic of the transverse beams vibrating in their symmetric,
midpoint-fixed modes. At these frequencies the midpoints are therefore effective-
ly "locked" and the wave motion is suppressed within a distance of one or two
elements from the source. Free flexural waves can be shown to propagate only in
relatively narrow zones [1,4]. However, with realistic values of damping, corre-
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sponding to loss factors 11 of the order 10 2. these "propagating" Elexural waves
are found to be significantly attenuated (with about 5 dB/element). The no -di-mensional frequency 9 is defined with reference to the column. {2 = m(so/E 12.
For typical dimensions used in concrete buildings a value of {2 = 200 corresponds
approximately to 300 Hz.

Response of a finite periodic structure

The infinite-periodic-structure assumption is well justified in the afialyaia of
lightly damped structures with a large number of elements N. When Nu becomes
less than approximately 1.5, R
however, reflections from
the ends of the structure be— _
gins to influence the Have I I I. . . !motion. thereby creating fix me. a : i _ I M :-

/

 

E
nite system vibration. Con-
sider a structure (Figure Fig. A. Block diagram of a periodicrstructure with
a) with a termination of arbitrary termination B. .
receptance on . The vibra- '. . . . > .tion of the gystefll expressed as the lunctmn receptance um]. (eojm) ls for m _ J
given by. [1].

omj =qm/Fj=aucosh(ju) [oBcosM(N-m)u)¢ausinh((N-m)u)]/[uBsinh(Nu)+oucosh(Nu)] (S)

where u =o sinh(u) is the "characteristic wave receptance" introduced by Head.
e.g. [37. {hen the freely propagating waves are reflected sufficiently at the
ends and the "overall phase change" conditions are satisfied, finite system 5 ‘
sonancea are built up. This is illustrated in Figure 5 by the spectrum of the
forced longitudinal vibration at =q /F of an B-element structure terminated by a
semi—infinite uniform column, or anoequivalent infinite plate of the same input
receptnnce. The number of longitudinal modes "within" a propagation zone corre-
sponds to the number of periodic elements (8). Modes occuring well within the
propagation zones are highly damped due to the dissipation at the termination. In
the second propagation zone the modes can hardly be identified because the recept-
ance of the termination is nearly equal to the characteristic wave receptance,
i.e., the input receptance of a semi-infinite periodic structure (dotted line).a: ._._.._._,._e _ o’
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Fig. 5. Modulus of junction receptance a . Fig. 6. lo I determined experiment-
Semirinfinite column termination. voila. ally. Shorgocolumn termination em-

bedded in sand. n(beams) ’h 0.02.
resulfi

 

Experimc

Results from experiments on a nominally identical periodic structure, but with a
more reflective termination. show a close overall correspondence with aw (Figure
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6) . The "end.modes" in a group are very sensitive to damping [5]. By adding
damping to the beams (obtaining n ’v 0.02) the response of the first mode in group
three. for example, was reduced by 35 dB, whereas the'modes 2, 3 and A were re-
duced by only 3 dB. This underlines the strong reteptance miss-match between o
and o ..nesr the bounds of a propagation and attenuation zone. already apparent‘1
from igure 5. Mode shapes of the flexurally vibrating beams are shown in Figure
7 for one of the longitudinal modes,
Le. a mode with purelylongitudinal mud-u um
displacements in the column. The long- 5- _
itudinal displacement mode shapes for I
all 8 modes in group four are shown ° I
in Figure 8. Very similar results are . i . v . ._
found for band two and three, shows Efi'mzc‘leiuncnon made Shapes Of lonsuudl
ing a pronounced decrease in the ~ .
longitudinal phase velocity as the frequency is increased from mode 1 to B. The
small changes in the mode shape of one of the beams as a function of mode number
are illustrated in Figure 9.

.w -—--—-n .. . . . ."‘.""'.
l. . ..../..’. u.‘ l l

     - _ I
.W I $_ $—

-w/ i

/

Fig. 8. Mode shapes 1 to 8 in band four, Fig. 9. Mode shapes of the transverse
longitudinal displacent oi the column. beam at junction two for longitudinal
'No added damping. modes in zone 2 to A. 'No added damping.

Conclusion

The model characteristic of the transverse beam components in the periodic struc-
ture hasbeen shown to have a strong influence on the wave motions.Narrow. re-
sonant attenuation zones for longitudinal waves have onlya small influence on a
broad band attenuation. Their presence, however. is not to be neglected because
they define individual propagation zones. The implication of these was demon-
strated for a finite system. showing the existence of a large number of longitu-
dinal resonances. controlled mainly by the transverse beams. and occuring at fre-
quencies much below the fundamental frequency 9 = 272 of a column of length L.
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