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Introduction

Structural vibration and transmission of waves in the vertical direction, from
floor to floor, often give rise to low frequency vibration and nmoise problems
in multi-storey buildings of lightweight conatruction (Figure 1). This paper

discusses harmonic vibration and wave

. N . ¢ prm—— ’ .
propagation characteristice at the oharm or shear wall
lower audio frequencies, up to about * b d r 7
300 Hz, of a simplified model of a 2 b | .
single vertical transmiasion path of N t

a modular building structure. The mo-

del, which has a two-dimensional con- uh+ﬁ
figuration similar to that of Figure L |
la, consists of a tall uniform column in L
loaded at regular intervals (L} with W v x
identical transverse beams. These re-

present in an idealized Form parts of
multi-modal floor structures.

Fig. 1. Examples of idealized building
structures.

The one-dimensional transmigeion path may be devided into a number of identical
structural units or "periodic elements" joined together to form a so-called
"periodic struceure” (Figure 2a). The pe- i . Felwt

ricdic element consists of the wave-carry- Ol-

ing component, column (C) of length L, and 1 A

of the load component, the transverse beam, I hl‘

which is devided into two "half-loads™ (B)

and (D) for convenience in analysis [1]. o s

. ]

Outline of the theory T

It is well=-known that free harmonic wave ' ‘ €

propagation in an infinite, periodic- |

structure is possible only in certain “ ) .
) frequency bands known as "propagation

zones", e.g. [2,3]. The frequency ranges i

in which wave propagation and associated

transport of vibrational energy is not
possible are known as "attenuation zones'.
These characteristics are described by a

uaﬁelul lE,O""‘

complex Erequency-dependent quantity, Fig. 2. (a) Block diagram of a perio-
the "propagation constant" ps=u +iu_ , dic structure with mulei-
which relaEE)E the harmonic displacement coupled elements; (b) a
VECLOFE qe (and forces) at positions single element. .

i} This work was conducced while the auther was at the Inscitute of Sound and
Vibratiot Research, University of Southampton, England. The work was support-
ed financially by the Danish Council for Scientific and Industrial Research.
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(&) in aéjacent elements
qUE+L)e™ = e Mq(e)e™ o

The variation with frequency of the real part (u_.) and the imaginary part {p_)
of the propagation constant evaluated For longitudinal-(i.e. vertical) wave mo-
tion in the structure is shown in Figure 3. :
The "attemuation constant' u_, expresses the e —— -
. B . Az, AL, - wier e a2 {a}
decay rate in wave amplitude per element and Helrt, aifil ity mt 7 et v 2e = ats
the '"phase constant” p_, describes the phase
change of the wave per element. From equa-
tion (1) it is clear that a propagation zone
exists provided the propagation constant is
purely imaginary, i.e. when uR=0.

iwt

afioruation conslanl

The vibration characteristics of the element
(Figure 2b) can be defined by its "recept-
ance" functions. Transfer receptance a, ,
for.example, is the harmonic displacement
at end(L) per unit harmonic force

at end(r). With n degrees of free~
dom at the ends the.displacement vector

q is thus given by the matrix products of
the nxn receptance matrices q and the

force vectors F, i.e.

phass eoratpm |y
wha s

Froiwt
(a) The real part p_ and
(b} the imaginatry part u
of the propagation ccnst&nt
for longitudinal waves,
_ _ n = 0.001.

g = Ppfp v e F;

" urEFE * urtrr .
Continuity of coordinates, equilibrium of force and the periodic property (equa=
tion (1)) can be applied to relate 9 and q, as well as the forces, which yield
' =

-l o
9. =e q; and Fr e 'F,

From equations (2)Vand {3) a general system equation can be derived, [3]

(2}

(3)

[a“mrr-(uhr*arl)cosh(u) - (g, p)sinh (W) F, = [£Cu,a)] Fo=0. (4)
The solutions of thie are, at any frequency, given by the particular values of u
which satiasfy the equation [f(u,a)| = 0, from which n pairs (tunJ vf propagation
congtants can be found.

Discussion of numerical resulrs

Free harmoniec longitudinal waves can propagate (i.e. without atteouxtion) in the
major part of the entire frequency range considered. The corresponding prop. zones
(PZ.} are individually succeeded by attenuation zones of a distinct "resonantc®
appearance. The high attenuatinn in these relatively narrow zomes is created by
the medal characteristic of the transverse beams vibrating in their symetric,
midpoint-fixed modes. At these frequencies the midpoints are therefore effective-
1y "locked" and the wave motion is supptessed within a distance of one or twe
elements from the source. Free flexural waves can be shown to propagate only in
relatively narrow zones [1,4]. However, with realistic values of damping, corre=-
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sponding to loss factors n of the order 10 2, these "propagating" flexural waves
are found te be significantly attenuared (with about 5 dB/element}. The nop-di-
mensional frequency 0 is defined with reference to the column, @ = w{Sp/EIF¥LZ.
For typical dimensions used in concrate buildings a value of @ = 200 corresponds
approximately to 300 Hz.

Response of a finite periodic structure

The infinite-periodic-structure assumption is well justified in the analysis of
lightly damped structures with a large number of elements N. When NuR becomes
less than approximately L.5,

however, reflections from . i

the ends of the structure be- 41

B
-, I
gins to influence the wave E’E} = nn -

| !
metion, thereby creating fi- i

) !
1 1 1 N 1 L}
Fr -t ] 1 ? 1 - L]

nite system vibration. Con-— )
sider a structure (Figure Fig. 4. Block diagram of a periodic structure with
4} with a termination of arbitrary terwmination B.

receptance ag. The vibra- .

. . : . 5 3
tion of the System expressed as the junction receptance umj(aajm) is for m > j
given by, [1},

amj=qm/Fj=awcosh(ju)[uBcosh((N-m)u)+uwsinh((ﬂ-m)u)]/[uﬂsinh(Nu)+awcush(Nu)] (5)

where o =a,sinh{u) is the "characteristic wave receptance” introduced by Mead,
e.g. [3%. &hen the freely propagating waves are reflected sufficiently at the
ends and the "overall phase change" conditions are satiafied, finite system re=
Sonances are built up. This is illustrated in Figure 5 by the spectrum of the
forced longitudinal vibration & =g /F of an 8-element structure terminated by a
semi-infinite uniform column, of an’equivalent infinite plate of the same input
receptance. The number of longitudinal modes '"within" a propagation zone corre-
sponds to the number of periodic elements (8). Modes gccuring well within the
propagation zones are highly damped due te the dissipation at the termination. In
the second propagation zone the modes can hardly be identified because the recept-
ance of the termination is nearly equal to the characteristic wave receptance,
i.e., the impur receptance of a semi-infinite periodic structure {dotted iine).
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Fig. 5. Modulus of junction receptance & . Fig. 6. |au__| determined experiment—

Semi-infinite column termination. n=0.007. ally. ShoTt column termination em-—
: bedded in sand. n{beams) " .02,
Lxperimental results

Results from experiments on a numinally identical periodic structure, but with a
more reflective terminativn, show a close overall correspondence with a, (Figure
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6) . The “end.modes" in a group ave very sensitive to damping [5]. By addlng
damping to the beams {obtaining n ~ 0.02) the response of the first mode in group
three, for example, was reduced by 35 dB, whereas the modes 2, 3 and 4 were re-
duced by only 3 dBR. Thig underlines the strong receptance miss-match between o
and a..near the bounds of a propagation and attenuation zome, already apparent
from Plgure 5. Mode shapes of the flexurally vibrating beams are shown in Figure
7 for one of the longitudinal modes,

et g o et o b S | 0 R B X< I I i

itudinal displacement mode s.lhapes for P p q\ i ,.I> q\ P ,P qj
) .

all 8 modes in group four are shown
in Figure 8. Very similar results are
found for band two and three, ghowr
ing a promounced decrease in the .
longitudinal phase velocity as the frequency is 1ncreased from mode 1 to 8. The
small changes in the mode shape of one of the beams as a function of mode number
are illugtrated in Pigure 9. .

’ﬂ -] Falicd KL

Fig. 7. Junction mode shapes of longitudi-
nal modes.
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Fig. 8. Mode shapes 1 to 8 in band four, Fig. 9. Mode shapes of the transversé
longitudinal displacement of the column. beam at junction two for longitudinal
®No added damping. modes in zone 2 to 4. "No added damping.

Con¢clusion -

The modal characteristic of the transverse beam components in the periodic strue-
ture has been shown to have a strong influence on the wave motions. Narrow, re=
gonant attenuation zones for longitudinal waves have only a small influence on a
bread band attenuation. Their pregence, however, is not to be neglected hecause
they define individual propagation zones. The implication of thege was demon-
gtrated for a finite system, showing the existence of a large number of longitu-
dinal resonances, controlled mainly by the transverse beams, and occuring at fre-
quencies much below the fundamental frequency $2 = 272 of a column of length L.
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