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Multizone sound fields allow multiple listeners, seated at different positions within a single sound 
reproduction system, to hear independent audio events. One of the limitations is that interference 
can occur between zones, particularly when the direction of sound propagation in one zone is in 
line with another zone. One solution to this problem is to restrict the direction of sound propaga-
tion to avoid the issue. If the loss of directional control is acceptable, then the sound field can be 
divided into strips within which independent sound fields can be created with low risk of inter-
ference. This paper considers two approaches to generating such sound fields in the 2D case. In 
the first, invariant 2D Bessel beams are derived, which produce unidirectional fields that do not 
disperse. The second approach uses a mode-weighting approach to produce more localised beams 
without side lobes. The relative effectiveness of the two approaches is investigated through nu-
merical simulations. 

 Keywords: Multizone, surround sound, personal sound 

1. Introduction 

Personal sound systems aim to provide independent audio streams for multiple listeners [1], [2]. 
To achieve this using a single sound reproduction system requires that multiple reproduction zones 
be established with independent sound fields in each [3]–[5]. One approach is to maximise the acous-
tic contrast between zones [6]–[9]. The approach can be extended using intensity control to include 
control of direction [10]. An alternative approach is to maximise the energy difference between two 
zones [11].  More generally, a trade-off can be made between the requirement of maximum contrast 
and the desire for directional control [12].  

Multi-zone reproduction is relatively easy to achieve when the direction of sound propagation 
within a zone is not in line with another zone, but when sound in one zone propagates towards another 
zone, it must diffract around the other zone to avoid interference. This is achievable at low frequencies 
[13] but at high frequencies it is more difficult [14]. Multizone fields can also be generated using the 
formalism of Wave Field Synthesis [15].  

An alternative approach to avoid interference is to produce a sound field with a single direction of 
propagation, as occurs in personal sound systems using a planar array [6], [7], [15]. While these 1D 
multizone fields provide no directional control, they allow the size of the zone in the direction of 
propagation to be extended, particular when using circular or spherical arrays which can produce less 
dispersive beams than planar arrays. For example, in the case of two zones, a reproduction system 
can produce two half-space fields, each occupying half of the reproduction area [16].  

This paper discusses the generation of 1D multizone fields using circular arrays. Two approaches 
are described. In the first, invariant Bessel beams are derived. In the second, modal bandpass win-
dowing the coefficients of a plane wave field produce beams of sound propagating in the same direc-
tion. The work is restricted to the 2D case for simplicity. The performance of the two approaches is 
quantified via numerical simulations. 
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2. Theory  

2.1 2D Invariant beams 
A general solution to the 2D wave equation in polar coordinates has the Herglotz form  
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and substituting the Jacobi-Anger expansion of the plane wave term,  
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yields the well-known plane wave expansion  
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In Cartesian coordinates the field (1) has the form 
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Using the Bessel expansion (3) for the cosine factor and 
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for the sine factor yields the Cartesian expansion 
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An invariant beam may be generated by a sum of plane waves arriving from a limited range of 
directions [ ]0 0,iφ φ φ∈ −  from the x-axis [17]. If 0φ  is sufficiently small then cos 1iφ ≈  and (5) can be 

approximated as  
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Substituting the expansions for the two terms in the integral from (2) and (6) yields the equivalent 
invariant approximations  
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These approximate the exact expansion in (7). Comparing (7) and (9), it is apparent that  
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This identity holds provided that the coefficients mα  are consistent with a narrow range of angles. 

It can be further validated as follows. Since the LHS of (10) is the convolution of mα   and ( )m
mi J kx  

it can be written 
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The discrete Fourier transform of each side is  
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which is the invariant approximation. 
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Consider, now, the coefficients 

( )0m qJ mα φ= .       (13) 

From (2), these produce an angular spectrum of the form [18], (11.4.24) 
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where ( ).qT  is the qth order Chebyshev function. For small 0φ  this will produce an approximately 

invariant beam. Substituting (13) in the first form of the invariant approximation in (9), and using the 
Bessel summation approximation (Appendix A) 
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yields the invariant approximation  
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which is a 2D cylindrical Bessel beam [19],[20]. Hence, cylindrical sound field coefficients de-
fined in terms of a Bessel function (13) produce a 2D cylindrical Bessel beam. The Bessel beam 
produces nulls at y=ynull where 

0 ,sinnull q vky zφ = ,     (17) 

where ,q vz  is the vth zero of the qth Bessel function. 

Fig. 1a shows the real part of the exact sound field generated from (4) for a frequency of f0 = 1 kHz 
and an angle 0 10φ =  degrees. The invariant approximation from (16) is shown in Fig. 1b. The main 
differences between the two fields are that the behaviour of the actual field in the null regions differs 
and, since the angular spectrum (14) has peaks at 0iφ φ= ± , the variation in x  is better approximated 

as ( )0exp cosikx φ  than ( )exp ikx as shown in (16). 

 

Figure 1: Field (a) and theoretical Bessel beam (b), q=2, 0φ  = 10 degrees, f0 = 1 kHz,  

2.2 Modal bandpass beams 
It has been shown that a half space field of a plane wave can be generated if the amplitudes of the 

negative order modes are suppressed [16]. It was also shown that the half-space boundary can be 
shifted a distance –y0 along the y-axis by shifting the mode weighting by a positive offset of approx-
imately 0 0m ky= . More generally, an approximately invariant beam can be generated at center y0 with 



ICSV24, London, 23-27 July 2017 

 

4  ICSV24, London, 23-27 July 2017 

two-sided width 2 dy  by bandpass weighting the mode amplitudes of a plane wave with a window of 

width 2 1dm +  where 

[ ]d dm ky=        (18) 

and [.] denotes rounding to the nearest integer. Furthermore the beam can be shifted by 0y  using 
a mode offset  

[ ]0 0m ky= − .       (19) 

The suppression of the field outside its intended width can be improved by using a smooth win-
dowing of the mode coefficients [16]. Here, a two-sided window with raised cosine roll-off at each 
end will be used. The roll-off is governed by specifying the percentage of the window that has values 
of one. Raised cosine roll-offs are then applied at each end. The window is shown in Figure 2a for a 
beam width of 1m, shifted to y = 1m, with a frequency of 1 kHz and 25% flatness. The corresponding 
sound field is shown in Figure 2b. The beam width is reduced by the roll-off of the mode weighting, 
and is largely confined within the desired range of 0 to 2 m. The beam magnitude tends to fan out 
slightly from the 0x =  line and so is not as invariant as the beams described in section 2.1.  

 

 
Figure 2: Modal bandpass beam spectrum (a) and field (b), f0 = 1 kHz 

3. Simulations 

The two approaches to generating invariant beams described above can be applied to producing 
1D multizone fields. The beam widths must also be frequency-invariant. Using Bessel beams, a two-
zone field can be generated using beams offset by 0y y= ±  so that the first null of one beam is posi-

tioned at the peak of the other. The corresponding mode index offset is [ ]0 0m ky= ± . To maintain a 

frequency-invariant beam the angle 0φ  is varied with frequency, from (17), as 
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With a finite head radius Rh, a listener at the peak of one beam will not be able to experience 
complete suppression of the other beam. The relative amplitude of the unwanted Bessel beam com-
pared to that of the desired beam is given by 



ICSV24, London, 23-27 July 2017 

 

ICSV24, London, 23-27 July 2017  7 

( )
( )

0 1,0 1,0 0

0 1,0 0

2

2
h

h

J z z R y

J z R y
γ

+
= .      (21) 

For example, with Rh = 90 mm and y0 = 1 m, 25γ = − dB which is a reasonable level of attenuation.  
Using the bandpass windowed mode approach, any number of beams can be produced with arbi-

trary widths. Here, a three-zone example will be given, with beams positioned at y = –1, 0 and 1 m, 
with beam widths of 1m (yd = 0.5 m).  

Simulations were written in Matlab using a circular array of L = 351 2D sources at a radius of 2m, 
producing a spatial aliasing frequency of 4.7 kHz. A sample frequency of 8 kHz was used to avoid 
aliasing throughout the reproduction area [13]. The source weightings were derived as [13] 

( )
1

l

M
imm m

l
m M m L

w i e
L H kR

φα
=−

= ∑ .     (22) 

An FFT size of 200 points was used and the weights were determined at 100 positive frequencies 
and the sound field produced at the time when the resulting broadband pulse was positioned at 
x = 1m and x = 0, to show how the pulse shape and localisation of the beam varied with position.  

3.1 Results 
Two Bessel beam pulses were generated at y = –1 and y = 1 m. The fields are shown when the 

pulses are at x = 1, in Fig. 3, and when they are at x = 0, in Fig. 4. The Bessel beams maintain their 
shape as the pulse propagates across the array. 

 

 
Figure 3: Bessel beams at y = –1 (a) and y = 1 (b), for x = 1m 

 
Figure 4: Bessel beams at y = –1 (a) and y = 1 (b), for x = 0m 
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The fields produced using three modal bandpass beams are shown in Figures 5 and 6. The pulses 
do not maintain their shape to the same extent as the invariant Bessel beams, but are well separated 
at the center of the reproduction region.   

 
Figure 5: Modal bandpass beams at y = –1 (a), y = 0 (b) and y = 1 (c), at x = 1m 

 
Figure 6: Modal bandpass beams at y = –1 (a), y = 0 (b) and y = 1 (c), at x = 0m 

  

4. Conclusions 

This paper has investigated the generation of sound beams which can create localised sound fields 
within a single array, for a single direction of arrival. Such 1D multizone fields may be of use where 
directionality is not critical, but the sound must be produced over a wider zone for several listeners. 
A family of 2D Bessel beams has been derived which remain relatively invariant, and which are well-
suited to the 1D multizone problem. However, the suppression of each beam at the center of the other 
is relatively poor because the field is zero only along a line. One solution to this would be to position 
a zeroth order and a higher-order Bessel pulse at y=0. The higher order pulse would produce a broader 
zero around y=0. The zeroth order beam would be arranged so that its first zero coincided with the 
peak of the higher-order beam. This approach has been investigated but the results are not reported 
here. An interesting theoretical aspect of this work is that 2D cylindrical Bessel beams are formed by 
a 2D integral over a narrow range of angles of incidence, which is equivalent to the generation of 3D 
spherical Bessel beams discussed in [17]. 

The modal bandpass beams allow an arbitrary number of beams to be generated with any width 
and so are more flexible than the Bessel beams. However, being non-invariant, they tend to disperse 
both before and after they cross the center of the array. Therefore the suppression of the unwanted 
beams will be less effective at these positions.  
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5. Appendix A 

Consider the following Bessel summation  
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where ( ).f  is an arbitrary continuous bandlimited function. We show that, for small angles 0φ ,  
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An arbitrary bandlimited function can be written 
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Substituting in (A 1) yields 
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For small 0ωφ  this is approximately  
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The approximation is good for small angles and for functions that have small bandwidths so that 
ω  is also restricted in range. Hence, for small 0φ ,  
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The normalised error in the approximation may be defined as  
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This error is shown in Figures A.1 for ( ) ( )qf x J x=  for q = 0 to 3 and for 0 10φ =  degrees. The 

error is below –40 dB for all values of x.  

 

Figure A 1: Expansion error  
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