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Abstract

A low frequency (plane wave) acoustical model for the transmission line type
woofer system is presented by considering the combination of loudspeaker and
pipe. Cases for both a uniform pipe and the commonly used tapered pipe are
considered as are the quantitative effects of sound absorbing materials on
wave propagation in the pipe.

1.0 Introduction

The Transmission Line system of obtaining extended low frequency reproduction
from a moving coil loudspeaker was first documented by Bailey (1) in 1965.
His paper described the use of a fibre - filled pipe, or transmission line,
extending behind the drive unit to completely absorb the propagating acoustic
wave (figure 1.1). However due to the difficulty of successfully absorbing
low frequency energy, because of the large wavelengths involved, the length of
the pipe and density of the filling material were arranged such that the pipe
effectively acted as a low pass acoustic filter. Thus mid and high
frequencies are subject to large attenuation in the pipe but low frequencies
re-emerge from- the open end with a phase such that reinforcement with the
direct radiated sound from the woofer takes place.

This paper attempts to formulate a quantitative model for a such a combined
pipe and driver system, considering both uniform and tapered pipes along with
the effects of fibrous materials.

2.0 Background

Bailey's first description, and later re-sxamination (2), however do not
include any quantitative analysis of the combined effect of loudspeaker and
fibre v filled pipe. Indeed no attempt was made to examine the effect of a
fibrous tangle on the propagation of an acoustic wave through a pipe, uniform
or otherwise. A later paper by Bradbury (J) contained rigorous analyses of
the effects of fibrous materials on plane wave propagation in a uniform pipe
by considering the aerodynamic properties of the fibres. He produced an'
expression for the complex wavenumber resulting from a mixture of air and
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fibrous tangle and thus was able to derive the acoustic impedance at the end
of a uniform pipe at low frequencies. However he confines his discussion to
concentrate on the effects of the filling materials rather than formulating a
complete model for a transmission line woofer system. To the authors
knowledge the only documented work concentrating on such a model is that of
Bullock and Hillman (d),who investigated a combined driver and uniform pipe
system. Although a comparison is made with'measured data, the experimental
rig used consisted of a driver mounted on the end of a non—uniform pipe. Also
the assumption is made that the radiation impedance of an open pipe can be
ignored at low frequencies.

3.0 Theory

3.1 Uniform Transmission Line

At low frequencies we make the assumption that the pipe only supports plane
wave propagation, so we can limit ourselves to a one-dimensional solution of
the wave equation. Thus theexpression for the pressure at the open end of
the pipe, ie at x = L (see figure 1.1), at time t is given by .

pi. = n-exp(-int) + B'exp(int) [l]

where A and B are constants representing the magnitudes of the incident and
reflecting waves respectively and n is the angular frequency. Similarly the
particle velocity at the same position is given by (as defined in Appendix A):

uL = 1_- A-exp(-int) — B'epoJlt) [2]
EC

where c is the velocity of sound in air of density r. Having these
expressions enables us toderive the specific acoustic impedance at the open
end of the pipe given by :_

2L = pL/ul.‘ [31

If we transform the pressure and velocity down the pipe we also have the
expression for the specific acoustic impedance at the driver end of the pipe,
is at x = 0, as :

£3 = A exp(ikL) + B~exp(-ikL)

re A sxp(ikL) — B‘exp(-ikL) [4]

at t = 0, where k is the wavenumber. By eliminating the constants A and B

from equations [3) and [4] an expression can be derived for the specilic

acoustic impedance at x = 0 in terms of that at x = L is :
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L = lerc + i'tankL [5]
to l + i(zL-tankL)/rc

3.2 The Laudspeaker

Taking the loudspeaker governing electromechanical equations (5) we have :

V = I'Zeb + Bl-u [6]

and F = -Bl'l + 2m0'u [7)

where V is the terminal voltage, I the driving current, Zeb the blocked (ie u

= 0) electrical impedance, 31 the transduction coefficient (or force factor),
F the net force on the diaphragm and zmo the open circuit mechanical impedance

not containing any of the acoustical elements. For a loudspeaker this latter

quantity is simply a combination of the impedances due to diaphragm mass and

suspension stiffness and damping. if we equate [7] to -zr.u, where Zr is the

total radiation impedance acting on the diaphragm, and combine [6] and [7],

for a loudspeaker driven from a voltage source, weget the expression for the
velocity :

u = s1-v (81
(Zmo + Zr)Ze

where 2e is the total electrical impedance obtained by combining V and I in

[6] and [7]. This is better expressed with Zr split into two components; that
of the front radiation impedance. er and the rear radiation impedance 2:: :

u a sl-v [9]
(Zmo + 2:: + zrr)ze

3.3 Effects of Fibrous Materials

Full analysis of the effects of fibrous materials introduced into the line on

acoustic wave propagation are dealt with in reference [3] so no attempt is

made here to reproduce that work. All that suffices is to say that the

aerodynamic drag as a result of the fibres interacting with the movement of

air results in a propagating wave which can be characterised by a complex

wavenumber, K, which is given by :

x = (a — i-D)k [10]

where a and B are frequency variable parameters dependant on the diameter,

density and packing density of the fibres. Full expressions for a and D are

given in Appendix B.
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It can he seen from the above expression that a wave. with propagation

characterised in the form Q.exp(—ikx) + R.exp(-ikx), is modified in two

distinct waysi Firstly, the speed of propagation is reduced by a factor of a,

meaning that in practice wavelengths in the pipe are effectively reduced by

the same factor. and secondly the wave decays exponentially with distance

according to the magnitude of B. This new complex wavsnumber can be inserted

in equation [5] to derive the specific acoustic impedance at the loudspeaker

end of the pipe. Thus the new expression for to is 1

59 = lerC + itagKL [11]

re 1 + izL/rC tanKL

where C is the complex speed of sound given by n/K. Please note that Appendix

8 defines a and B as positive quantities, hence the minus sign in equation

(10].

3.4 Combining Loudspeaker and Transmission Line

Since equation [9] gives the velocity of the loudspeaker diaphragm for a given

input voltage we need to insert the appropriate quantities for Zmo, Zr and 2e

to produce a full expression for a combination of loudspeaker and pipe. since

we are dealing only 'with low frequencies we can consider the radiation

impedance on the front part of the loudspeaker diaphragm to be that of an

unbaffled circular piston which can be approximated at low frequencies to :

gr; = Auk-ad): + i(O.6)}k-ad [12]

rch 2( }

where sd is the area of the loudspeaker diaphragm and ad its radius. The

expressions for Zmo and 29 are given in appendix C. For the rear radiation

impedance, this is equal to theacoustic impedance at the loudspeaker end of

the tube, so we can obtain this from equation [ll] by inserting an expression

for 2L similar to equation (12] and dividing by Sd. Thus :

zrr = zo/Sd [13]

with this final expression defined we can use equation [9] to obtain the

actual velocity of the loudspeaker diaphragm when loaded by a transmission

line and this enables us to determine the particle velocity at the open end of

the line,.ie at x = L.

3.5 Tapered Transmission Line

Host practical applications of a transmission line woofer system use a pipe

which reduces in cross sectional area progressively from loudspeaker end to

open end. This means that the theory is somewhat different to that for a
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uniform pipe although it can he arrived at in a similar fashion. Figure 3.1

shows the basic arrangement. The main difference in deriving the theory for a
tapered pipe rather than a uniform one is that wave propagation in the pipe
obeys the form, given by a solution to the horn equation (5) at t = 0, as

follows i

p = A exg(-lxx] + B-exp[iK§) [141
(xo + x) (xo ¢ x)

where h and a are constants as in equation (l) and x is the distance along
the axis of the pipe. Therefore evaluating the particle velocity gives :

u =_l'{A'§52(-1Kx) - B-exp(in))-(1 + i } [15]
rC ( (xo + x) (xo + x); ( [(xo § x)}

 

where xo is defined in figure 3.1. with these two expressions we are able to
derive the specific acoustic impedance at the loudspeaker end of the pipe in a
similar way to that in section 3.1. Thus for a tapered pipe we have :

Q= 4er + i(zL[;CKxg ¢ tanKL}

:c 1 — gytanxt. - zL-tanxL * u 1 + zL-tanxg - zL-tanKl. ;
rCKxo rCK(xo+L) { R(xo+L) rC rCK‘xo(xo+L))

[16]

so having equation [16] enables us toevaluate so for a tapered transmission
line and use the result in equation [9] to obtain the velocity of the

loudspeaker diaphragm in a similar way to the method described in section 3.4.

4.0 Discussion

it is interesting to investigate some of the properties of the above

Taking equation (5] for the specific acoustic impedance on the

uniform tube and

ie an = m, we

and purely

Firstly

expressions.

rear of a loudspeaker mounted at the end of an unfilled

considering the case when the other end of the tube is sealed,
see that zo/rc = -i'cotkL. This expression, being negative
imaginary, represents a compliance (inverse stiffness) presented to the rear

of the loudspeaker and therefore gives us the form of a single driver in a

sealed box. We can use this expression to evaluate the resonance frequencies

of the pipe by equating :0 to zero. Replacing the standard wavenumber, k,
with the complex version for a filled pipe would give us different frequencies
according to the values of u and n.

sy studying equation [16] for the impedance on the rear of .a loudspeaker

mounted in a tapered tube we see that in the case when xoe m, is the tube

turns from tapered into uniform, we obtain equation [5] again.
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We can consider an example of a transmission line woofer system by inserting

values in the above equations to represent a suitable driver and pipe

combination. Figure 4.1 shows the volume velocities (multiplied by frequency

therefore proportional to sound pressure) of the diaphragm and at the open end

of a 1.5m long by 150mm diameter unfilled uniform tube to which the

loudspeaker is mounted. The parameters describing the loudspeaker are given

in Appendix D. In this case the system behaves rather like an organ pipe with

a series of harmonically related modes. Also on the graph is the diaphragm

velocity for the same combination of driver and pipe but with the end closed

as if it was a sealed cabinet system.

Placing some filling in the tube has three effects which are seen in figure

4.2. Not only are the resonant modes at lower frequencies than in the case of

the unfilled tube but because of the frequency dependant nature of the

parameters a and B the modes no longer occur at harmonically related

frequencies. Also the presence of the filling materials provides damping for

the system.

For the case of a tapered transmission line the results are very similar and

these are seen in figure 4.3 for a tube of the same length containing the

same type and packing density of filling. Changing the type and quantity of

the filling material can influence the results significantly and figures 4.4

and 4.5 give two such alternative cases.

5.0 Conclusions and Recommendations

A model is presented to describe the performance of a loudspeaker and

transmission line combination. Cases for a tapered pipe as well as a uniform

pipe are presented. The effects of filling introduced into the pipe are‘

examined in terms of the influence on the speed of propagation of sound in the

tube and its rate of decay with distance. From the discussion it is shown

that little significant difference exists between the low frequency

performance of straight or slightly tapered pipes.

The model could be easily expanded to incorporate combinations of different

diameter pipes, whether straight or tapered, and series combinations of

different filling materials.

Since the effects of filling materials presented are only predictions, a

method of measuring their properties is desirable. One way by which this

could be done is with an impedance tube method, however, work is progressing

on investigating the use of the loudspeaker electrical impedance to derive the

material properties.
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7.0 Appendices

A. The relationship between pressure and particle velocity is given by

Euler's equation which, in one dimensional form. is as follows :

rvéu = fie
6t 6x

B. For evaluation of the parameters a and n from equation [10] use is made of

the following expressions :

a = j 1 r I + n? D 1 h.cose

{ 1 * (“P/D)z )

D a ((1 9 Plr)’ + [nP(D)‘)k.aine

{ 1 * (RP/DI‘ )

where P is the packing density of the fibrous tangle and D is the aerodynamic

drag parameter given by :

D = 27g.(P {n

d1 (rf)

and a = 1(tan_1(nP/D) - tan—l—[nle )
2( (1 + P/r))

d is the diameter of the

The value' of 27 is
where rf is the density of the fibrous material,

fibres and p is the viscosity of air (0.0000185 kg/m-s).

said to be arrived at by experiment and n is given as 1.4.
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Co The open circuit mechanical impedance of a loudspeaker is given by .

Zmo = imm - alt!) + Rm

where m is the effective diaphragm mass. 3 the total suspension stiffness and

Rm the suspension damping, and its total electrical impedance is :

19 = Zeb + 511

(Zmo + 2:)

 

D. in the examples in section 420 a loudspeaker with the following parameters

was used :

Diaphragm mass = 15 9; suspension stiffness — 1250 N/m

suspension damping = 1.0 kg/s; Bl - B Tm; Zeb = 6.4 ohm

\r” ‘:l
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Figure 4.2
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Figure 4.3 Figure 4.4

3

. Figures 4.1 to 4.5 2 Calculated

, particle velocitiee for

' transm‘ueion line uyetem; D -

‘ l . . loudspeaker; 0 = end of. pipe; - -

      

loudspeaker in equivalent sealed

box.- — - summed. velocities of

loudspeaker and pipe.

The tilllnq material

specifications are as follawa :-

4.1 = P II 0

Figure 4.5 4.2 a P I 10 kg/cuun; If = 4000

kg/cuml; d - 5 pm (glaeefibre)

4.3: an 4.2, 4.4 : P - 5; :f I

4005,- d = 5 mm, 4.5 : P = 10; ti = 1000,- d - 25pm {BAF wadding). The

diameters of the open end and loudspeaker end of the tapered pipe were

150 and 300 mm tepectively.

       

10 I 10m:
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