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Abetract

A low frequency (plane wave) acoustical model for the transmission line type
woofer system is presented by conoidering the combination of loudspeaker and
pipe. Cages for both a uniform pipe and the commonly used tapered pipe are
considered aB are the quantitative effects of sound absorbing materials on
wave propagation in the pipe.

1.0 Introduction

The Tranemission Line system of obtaining extended low frequency reproduction
from a moving coil loudspeaker was first documented by Bailey {1} 4in 1965,
His paper described the use of a fibre - filled pipe, or transmission line,
extending behind the drive unit to completely absorb the propagating acoustlc
wave {figure 1.1). Howaver due to the difficulty of successfully absorbing
low frequency energy, because of the large wavelengths involved, the length of
the pipe and density of the filling material were arranged such that the pipe
offectively acted as a low pass acoustic filter. Thus mid and high
frequencies are subject to large attenuation in the pipe but low frequencies
re-emerge from. the open end with a phase such that reinforcement with the
direct radiated sound from the woofer takes place.

Thie paper attempts to formulate a guantitative model for a such a combined
pipe and driver system, considering both uniform and tapered pipes along with
the effects of fibrous materials.

2.0 Background

Bailey's first description, and later re-examination (2), however do not
include any guantitative apalysie of the combined effect of loudspeaker and
fibre -~ filled pipe. Indeed no attempt was made to examine the effect of a
fibrous tangle on the propagation of an acoustic wave through a pipe;, uniform
or otherwise. A later paper by Bradbury (3} contained rigorous analyses of
the effects of fibrous materiale on plane wave propagaticn in a uniform pipe
by considering the aerodynamic properties of the fibres. He produced an
expression for the complex wavenumber resulting from a mixture of air and
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fibrous tangle and thua was able to derlve the acoustic impedance at the end

of a uniform pipe at low freguencies. However he confinee his discussion ta
cancentrate on the effects of the filling materials rather than formulating a
complete model for a transmission line woofer system. To the authors

knowledge the only documented work concentrating on euch a model is that of
Bullock and Hillman (4}, who investigated a combined driver and uniform pipe
system. Although a comparison is made with' measured data, the experimental
rig used consisted of a driver mounted on the end of a non-uniform pipe. Alsc
the asgumption ie made that the radiation impedance of an opem pipe can be
igneored at lew frequencies.

3.0 Theory

3.1 Uniform Transmission Line

At low frequencies we make the assumption that the pipe only supports plane
wave propagation, Bo we can limit ourselves to a one-dimensional sclution of
the wave equation. Thus the expression for the pressure at the open end of
the pipe, ie at x = L (Bee figure 1.1), at time t is given by

pL = A:exp(=-int) + B-exp(int) [1]

where A and B are constants representing the magnitudes of the incident and
reflecting waves regpectlvely and R is the angular frequency. Similarly the
particle velocity at the same position ie given by {as defined in Appendix A):

uL = 1 - A-exp{-iflt) - B-exp(ifit) [2]
rc

where ¢ ie the velocity of sound in air of density r. Having these
expressions enables us to derive the aspeciflic acoustlc impedance at the open
end of the pipe given by

2L = pLful’ (3]

If we transform the pressure and velocity down the pipe we also have the
expression for the sapecific acoustic impedance at the driver end of the pipe,
ie at x = 0, as : N

zg = Arexp{ikl,) + B-exp{-ikL) )
re A'exp({ikL) - Brexp(-ikL) [4]

at t = 0, where k is the wavenumber. By elimipating the constants A and B
from eguations ([3) and [4] an expression can be derived for the apecific
acoustic impedance at x = 0 in terms of that at x = L ie
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= zL/rec + i-tankL [5])

g
re 1 + if{zL-tankL}/rc

3.2 The Loudspeaker

Taking the loudspeaker governing electromechanical equatlons (5) we have
Vs I-Zeb + Bl-u (6]

and F = -Bl'l + Imo'u [7)

where V is the terminal voltage, I the driving current, Zeb the blocked (ie u
= 0) electrical impedance, Bl the transduction coefficient (or force factor),
F tha net force on the diaphragm and Zmo the open clrecuit mechanical impedance
not containing any of the acoustical elements. For a loudspeaker this latter
quantity is simply a combination of the impedances due to diaphragm mass and
sugpension stiffness and damping. If we equate (7] to -Zr.u, where Zr is the
total radiation impedance acting on the diaphragm, and combine (6] and [7],
for a loudspeaker driven from a voltage source, we get the expression for the
velocity :

u = Bl-¥ (8]
{Z2mo + Zr)Ze

where Ze ia the total electrical impedance obtained by combining ¥ and I in
[6) and [7]). This is better expressed with 2r split into two components; that
of the front radiation impedance, Zrf and the rear radiation impedance Zrr

u = Bl-v 9]
{ZImo + Irf + Zrr)ie

3.3 Effects of Fibrous Materials

Full analysis of the effects of fibrous materlals introduced into the line on
acoustic wave propagation are dealt with in reference [3] so no attempt is
made here to reproduce that work. All that sufficea is to say that the
aerodynamic drag as a result of the fibres interacting with the movement of
air results in a propagating wave which can be characterised by a complex
wavenumber, K, which is given by :

K= (a-18)k [10]

where a and 0 are freguency variable parameters dependant on the diameter,
density and packing density of the fibres. Full expressions for o« and 4 are
given in Appendix B.
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It can be seen from the above expression that a wave, with propagation
characterised in the form Q.exp{-ikx) + R.exp(-ikx}, is modified in two
distinct ways. Firatly, the speed of propagation is reduced by a factor of a,
meaning that in practice wavelengthe in the pipe are effactively reduced by
the same factor, and secondly the wave decays exponentially with distance
according to the magnitude of B. This new complex wavenumber can be inserted
in equation (5] to derive the specific acoustic impedance at the loudspeaker
end of the pipe. Thus the new expression for zo is

z0 = _2L/rQ + itanKL [11]
rC 1 + izL/rC tanKL

where C is the complex speed of scund given by 0/K. Please note that Appendix
B defines o and B as positive guantitiea, hence the minus sign in equation
(107,

3.4 Combining Loudspeaker and Transmiseion Line

Since equatlon [9) gives the velocity of the loudapeaker diaphragm for a given
input voltage we need to insert the appropriate quantities fer Zmo, 2Zr and Ze
to produce a full expression for a combination of loudsapeaker and pipe. Since
we are dealing only -with low freguencies we can consider the radiation
impedance on the front part of the loudspeaker diaphragm toe be that of an
unbaffled circular piston which can be approximated at low frequencies to :

Zrf = L{(k-ad)? + i{0.6)}k-ad [12]

rcsd 24 }
where Sd is the area of the loudspeaker diaphragm and ad its radius. The
expressions for Zmo and Ze are gliven in appendix C. For the rear radiation

impedance, this is equal to the acoustic impedance at the loudspeaker end of
the tube, so we can obtain this from equation [11) by lnserting an expresgion
for zL similar to equation {12] and dividing by 5d. Thus :

Zrr = zofsd [13])

With this final expression defined we can use equation [9] to obtain the
actual velocity of the loudspeaker diaphragm when loaded by a transmission
line ang this enables us to determine the particle velocity at the open end of
the line, .ie at x = L.

3.5 Tapered Tranemission Line

Most practical appllcations of a transmigsion line woofer system use a pipe
which reduces in cross sectional area progressively from loudepeaker end to
open end. This means that the theory ig somewhat different to that for a

Proc.l.0.A. Vol 12 Part 8 (1990)

114




Proceedings of the Institute of Acoustics

AN ACOUSTICAL MODEL FOR TRANSMISSION LINE WOOFER SYSTEMS

uniform pipe although it can be arrived at in a similar fashion. Figure 3.1
shows the basic arrangement. The maln difference in deriving the theory for a
tapered pipe rather than a uniform one is that wave propagation in the pipe
obeya the form, given by a solution to the horn equation (5) at t = 0, as
follows

p = BAexp(-iKx) + B-exp{iKx) (14}

{xo0 + x) {x0 + x)

where A and B are constants as in equation (1] and x is the distance aleng
the axis of the pipe. Therefore evaluating the particle velocity glves :

u=_1l-{A'exp(-iKx} - B-exp{iKx)} {1 + i } [15)
eC { (xo + x) (xo + x)} { K{xoc + x)}
where xo is defined in flgure 3.1. With these two expressions we are able to

derive the specific acoustic impedance at the loudspeaker end of the pipe in a
gimilar way to that in section 3.1. Thue for a tapered pipe we have :

o = 2L/rC + i(sL/rCExo + tanKL)
rC 1 - zL-tanKL - zL-tanKL + i{ 1 + 2L-tanKL - zL taoKL }
rCRxo rCK (xo+L) { K{xo+L) rC rCRixo(xo+L)}

(16])

S50 having equation (16] enables us to evaluate zo for a tapered tranemission
line apd uee the result in equatjon [9] to obtain tha velocity of the
loudspeaker diaphragm in a similar way to the method described in section 3.4.

4.0 Discussion

Firstly it is interesting to investigate some of the propertiea of the above
expresaions. Taking equation {5) for the specific acoustic impedance on the
rear of a loudspeaker mounted at the end of an unfilled uniform tube and
considering the case when the other end of the tube is sealed, ie zL = ®, wa
see that zofrc = -i-cotkL. Thie expression, being negative and purely
imaginary, represents a compliance (inverse stiffnees) presented to the rear
of the loudspeaker and thersfore gives us the form of a slngle driver in a
gealed box, We can use thils expression to evaluate the rescnance frequencies
of the pipe by equating zo to zero. Replacing the standard wavenumber, k,
with the complex veraion for a filled pipe would give ue different frequencies
according to the values of a and B.

By satudying equation [16)] for the impedance on the rear of.. a loudspeaker
mounted in a tapered tube we eee that in the case when xo = @, la the tube
turns from tapered into uniform, we obtain equation [5) again.
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We can conasider an example of a transmission line woofer aystem by ineerting
values in the above equations to represent a suitable driver and pipe
combination. Figure 4.1 shows the volume velocitiee {multiplied by frequency
therefore proportional to sound pressure} of the diaphragm and at the open end
of a 1.5m long by 150mm diameter unfilled wuniform tube to which the
loudspeaker is mounted. The parameters describing the loudspeaker are given
in Appendix D. 1In thlis case the system behaves rather like an organ pipe with
a serles of harmonically related modes. Aleo on tha graph is the diaphragm
velocity for the sane combination of driver and pipe but with the end clesed
aa Lf it was a sealed cabinet eystem.

Placing some filling in the tube ham three &ffecta which are seen in figure
4.2. Not only are the resonant modes at lower frequencies than ln the case of
the unfilled tube but because of the frequency dependant nature of the
parameters a and B3 the moedes no longer occur at harmonically related
frequencies. AlSo the presence of the filling materials provides damping for

the system.

For the case of a tapered transmisslon line the results are very gimilar and
these are seen in figure 4.3 for a tube of the same length containing the
pame type and packing density of filling. Changing the type and quantity of
the filling materlal can influence the results gignificantly and figures 4.4
and 4.5 give two such alternative cases.

5.0 conclusions and Recommendations

A model is presented to deacribe the performance of a loudepsaker and
transmission line combination. Cases for a tapered plpe ase well as a uniform

pipe are presented. The effects of filling introduced into the pipe are .
axamined in terms of the influemce on tha speed of propagation of sound in the
tube and its rate of decay with distance. From the discussion it is shown

that - little slgnificant difference exists between the low frequency
performance of straight or slightly tapered pipes.

The model could be easily expanded to incerporate combinations of different
diameter pipes, whether straight or tapered, and series combinations of
different filling materials.

since the effests of £illing materials presented are only predictions, a
method of measuring their properties is desirable. One way by which this
could be done io with an impedance tube method, however, work ie progressing
on investigatiny the use of the loudspeaker electrical impedance to derive the
material properties.
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7.0 Appendices

A. The relationship between pressure and particle velocity is given by
Euler's equation which, in one dimensional form, is as follows :

r.8u = -§
&t &x

B. For evaluation of the parameters a and B from equation {10) use is made of
the following expressions :

{1 ¢« P/ry2 + (OP/D)3}%.co80
{ 1 + (aP/D)? H

o

B={{1 * P/ry? + (op/Di12}%.8ine
{ 1+ (np/D)1? }

where P is the packing density of the fibrous tangle and D is the aerodynamic
drag parameter given by :

27u. {P 3n

D =
da {rf}
and © = 1{tan ‘(oP/D) - tan 1-ioP/Dy )

24 {1 + PJ/r)}

where rf is the density of the fibrous material, d is tha diameter of the
fibres and u i5 the viscosity of air (0.0000185 kg/m-B). The value of 27 is
paid to be arrived at by experiment and n is glven as 1.4.
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€. The open circuit mechanical impedance of a loudspeaker is given by :

Zmo = i(ftm - 8/Q) + Rm

where m is the effective diaphragm mass, 8 the total suspension stiffness and

Rm the suspension damping, and its total electrical impedance is :

Ze = Zeb + B12
{Zmo + Ir}
0. In the examples in section 4.0 a loudepeaker with the following parameters
was used :

Diaphragm mass = 15 g; suspension stiffness = 1250 N/m

suspension damping = 1.0 kg/s; Bl = 8 Tm; Zeb = 6.4 ohm
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Figures 4.1 to 4.5 Calculated
particle velocities for
transmission line system; [} =
loudspeaker; O = end of pipe; - =
loudspeaker in eguivalent sealed
box; — = spummed velocities of
loudspeaker and pipe.

The filling material

specifications are as follows :-
4.1 + P =20

Figure 4.5 4.2 : P = 10 kg/cu.m; rf = 4000
kg/cu.m; d = 5 um (glassfibre)
3.3 s am 4.2, 44 : P= 55 ¢f=
4000; d = 5 um, 4.5 : P = 10; rf = 1000; d = 25um (BAF wadding}). The

diameters of the open end and loudspeaker end of the tapered pipe were

150 and 300 mm respectively.
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