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It is well known that voice biometric systems are vulnerable to imposture. Typical spoofing attacks 
that are performed on speaker verification systems can use impersonation, replay, voice conversion, 
artificial signals, speech synthesis and other approaches. In this work the authors analyze the 
effectiveness of potential spoofing attacks using different speech synthesis approaches. The state of the 
art speech synthesizers using deep neural networks for acoustic characteristics modelling and high-
quality vocoder with enhanced excitation function model, are able to generate a very natural speech 
signal keeping the personal characteristics of the target speaker, whose speech samples were used 
either for adaptation of some general voice, or for the complete design of the speech synthesizer. The 
synthesis artefacts are nearly imperceptible in their signal. However some systems using unit selection 
from a big speech database often offer comparable or even better speech quality. An i-vector based 
speaker verification system with PLDA scoring was used for experiments. Several male and female 
synthesized voices, both in vocoder-based and unit-selection versions were tested for their spoofing 
effectiveness in speaker verification. Interesting results show, that the lower variability of the 
synthesized signal can sometimes lead to significantly higher scores in comparison to those of the real 
speech. Some possible countermeasures against this type of attacks are discussed. 
Keywords: speaker verification spoofing, speech synthesis 

 

1. Introduction 

Biometrics uses methods for recognition of humans based upon intrinsic physical or behavioural 
traits. Biometrics is used as a form of identity access management and control. Different areas of 
biometrics include physical biometrics, behavioural biometrics and medical biometrics [1, 2]. This 
paper is focused on the area of people identity verification from the acoustic characteristics of 
speech and studies the effectiveness of speaker verification systems spoofing using speech 
synthesis. 

In contrast to most of the published research (see e.g. [3]), which most often checks the spoofing 
capability of the synthesizers in which the universal voice built from a huge amount of data of many 
speakers is adapted to a target voice using only several tenths of utterances of the target speaker, in 
this work we compare three synthesizers built entirely from the recordings of each particular target 
speaker. This approach was chosen to get a rough idea of the effectiveness of different types of the 
state of the art speech synthesis systems themselves in the Speaker Verification (SV) spoofing 
without the influence of adaptation.  Therefore the same utterances included in the original voice 
database of the target speaker are also used for training and testing the synthetic voices. The 
training sets and testing sets are of course different. The settings of the synthesizers were optimized 
by a human expert to maximum naturalness, intelligibility and similarity to the original voice. They 
have not been by no means optimized to reach the maximum speaker verification scores. 
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2. Speaker verification 

Speaker verification is a popular biometric identification technique [4] used for authenticating 
subjects using their biometrics, the speech signal. The method is attractive as it does not require 
direct contact with the subject (e.g. like iris and finger print recognition systems); it also does not 
require any special sensors, because microphones are now present on most  portable hardware [5]. 

In speaker verification, a system decides whether the speaker is the same subject as he claims to 
be; thus the response is either true or false [6]. 

Mel Frequency Cepstral Coefficients (MFCC) are generally used to represent the acoustic 
parameters of the speech signal. In [7] the effect of multi-level wavelet decomposition as feature 
extraction method based on Artificial Neural Networks (ANNs) was studied. The work [8] 
presented an efficient Particle Swarm Optimization based optimization to enhance the performance 
of ANN for speaker recognition by means of optimizing ANN weights. 

 Approaches based on joint factor analysis (JFA) [9, 10],  acoustic factor analysis (AFA) [11],  
i-vectors [12] and probabilistic linear discriminant analysis (PLDA) [13], have maintained 
outstanding performance in challenging evaluation scenarios, such as the Speaker Recognition 
Evaluation series developed by the National Institute of Standards and Technology (NIST) [14, 15].  

The i-vector approach has risen to prominence as the de facto standard in recent speaker 
verification systems, due to its intrinsic capability to map an utterance to a single low-dimensional 
i-vector, turning a complex high-dimensional speaker recognition problem into a low-dimensional 
classical pattern recognition one [16, 17, 18, 19]. 

3. Speaker verification system used in the experime nt 

The SV system was created using KALDI research toolkit [20]; the i-vector approach [12] was 
used with PLDA scoring  [21]. LibriSpeech corpus  [22]  was used for UBM training (2500 English 
speakers, 3 minutes of speech per each). 

A part of the VoxForge database [23] was used as a test set. 400 speakers were chosen as target 
speakers, and other 1500 speakers as “impostors” (non-target). One minute of speech per speaker 
was used for enrolment. The utterances were taken from different recording sessions when 
available. The total number of 80 000 test utterances was used with the length of 2 to 10 seconds. 

In the Speaker verification test each of the enrolled speakers has been tested against his own 
utterances (target) and against utterances of each of all the other speakers (non-target). The distance 
between a particular speaker model and the actual incoming utterance is expressed as score. As can 
be seen on Fig.1.a., the verification works well on the VoxForge data, as the score distributions of 
target and non-target speakers overlap only minimally. 

 

a)                 b)  

Figure 1: a) Score distributions for target and non-target speakers with the VoxForge test set; b) DET curve 
of the speaker verification tested on VoxForge speech database. 

The reliability of speaker verification on a given test data is generally presented on the Detection 
Error Trade-off (DET) Curve  [24]. DET-curve plotting software provided by NIST [25] was used to 
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create the graph of the DET curve of the speaker verification task (see Fig.1.b.). The Equal Error 
Rate (EER) in the SV was about 3%. 

Both training and testing databases include only English speech. Such a big speech databases are 
not available in Slovak so the authors of this paper has accomplished a number of cross-language 
experiments using UBM trained on English speakers for SV of Slovak speakers speaking Slovak. 
The effect of using different language for UBM training than for testing did not introduce such a big 
error that would substantially affect the results of this comparison experiment because the setting of 
the SV system was the same for all voices. As the results of the SV were very good when tested on 
several Slovak databases, it was decided to use the UBM trained on English LibriSpeech database 
also in this work. 

4. Spoofing in speaker verification  

According to [26] most biometric systems (including SV) are vulnerable to imposture. Spoofing 
attacks are performed on a biometric system at the sensor or acquisition level to bias score 
distributions toward those of genuine clients, increasing the False Acceptance Rate (FAR). [27]  

Today the spoofing attacks on the SV systems are mostly realized through: 
Impersonation [see e.g. 28, 29]. Impersonation refers to spoofing attacks with human-altered 

voices and is one of the most obvious forms of spoofing. The work [30] showed that impersonation 
increased FAR rates from close to 0% to between 10% and 60%. 

Replay attacks [31], using speech recordings of a genuine client, or concatenation of shorter 
segments. The equal error rate (EER) of 1% can increase to 70% using replayed spoof attacks [32]. 

Voice conversion [33, 34, 35], which is a technique that electronically converts one speaker’s 
voice towards that of another.   

Speech synthesis [36,37]. In this approach a speech synthesizer is used which is adapted to the 
voice of genuine clients. Using an HMM-based speech synthesiser, the FAR can rise up to 91%.  

Artificial, non-speech-like tone signals [26]. The work [38] shows significant vulnerabilities to 
entirely artificial, non-speech-like tone signals. Certain short intervals of converted speech yield 
extremely high scores or likelihoods. Such intervals are not representative of intelligible speech but 
they are nonetheless effective in overcoming typical SV systems.  

5. Speech synthesis systems used in the experiment 

Three types of speech synthesizers were used in the experiment, with four voices each. The 
studio recordings of two male and two female speakers were used for the synthesizers training and 
testing. The sampling frequency was 16 kHz. 

The Unit Selection synthesizer (us) was completely developed at the Institute of Informatics of 
the Slovak Academy of Sciences (IISAS).[39] The intonation model and model of phoneme lengths 
is based on CART trees. The basic concatenation elements used in this system are syllables. 

The HMM synthesizer (hmm), a statistic parametric synthesizer with intonation, phoneme-
lengths and spectral models, was developed using HMM-based Speech Synthesis System tools [40].   

Pentaphones were used as basic elements and they were modelled using five-state HMMs. Three 
streams are modelled using HMMs: Duration (state durations), logarithmic fundamental frequency - 
logF0, and Spectral parameters (Mel Cepstral Coefficients). The speech is generated by the Mel-
generalized cepstral vocoder (MGC) using a simple pulse/noise excitation. This excitation model 
does not fully represent natural excitation signals and generates “buzzy” speech. [41, 42].  

 The DNN synthesizer (dnn) was developed using Merlin toolkit for building Deep Neural 
Network models for statistical parametric speech synthesis [43].  It was used in combination with a 
front-end text processor designed at the IISAS, and the WORLD vocoder [44], version 0.2.0. 
WORLD decomposes input speech into three parameters: Fundamental frequency (F0), spectral 
envelope and aperiodicity. Representation of excitation via the band-aperiodicity function 
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overcomes the older approach using direct excitation signal modelling [45]. The used Deep Neural 
network had six Feed Forward hidden layers, having 1024 hyperbolic tangent units each.  

Speech data for synthesizers training and testing were obtained by studio recording of prompted 
Slovak utterances, accomplished by two male and two female speakers. The length of the utterances 
was typically one sentence, but the sets also included shorter (one or more words) and longer (up to 
three sentences) utterances. The female speakers db and ss recorded 8733 and 2542 utterances 
respectively, which is about 9 and 2.5 hours of speech. The male speakers mr and sc recorded 2486 
and 1571 utterances respectively, which is about 2.5 and 1.5 hours of speech.      

To illustrate the overall timbre similarity of voices we compare on Fig.1. the differences in the 
Long Time Average Spectra (LTAS) of the synthesized voices with respect to that of the original 
voice (female speaker db). It can be seen, that the statistical parametric synthesizers hmm and dnn 
exhibit peaky structure of the difference function probably caused by a well known phenomenon of 
their preference of the average values of pitch.  In the range 600 to 6600 Hz the difference does not 
exceed 5 db, which suggests that spectral modeling is good.  The noticeable suppression of 
frequencies over 7.5 kHz does not negatively affect the quality of the synthesized signal. 

 

 
Figure 2: Differences between the LTAS of the speaker’s voice and that of particular synthetic voices 

(female speaker db) . X-axis shows the frequency and y-axis gives the values of Power Spectral Density. 

To get an idea on the differences in the sound of the sythesizers we present on Figure 3 
spectrograms of one sentence produced by the original voice and by the three types of synthesizers. 
The spectrogram of the hmm synthesized utterance seems to be blurry – the formant structure is a 
bit less clear, the unit selection algorithm leaves observable discontinuities on the concatenation 
points. The dnn synthesized utterance is evidently most similar to the original voice. 

 

a)  b)  

c) d)  

Figure 3: Spectrograms of the utterance “Zákon Národnej Rady Slovenskej Republiky” (The law of the 
National Council of the Slovak Republic) uttered by a) the speaker’s original voice, b) HMM synthesizer - 

hmm, c) DNN synthesizer - dnn, and d) Unit Selection synthesizer - us (female speaker db). 
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6. Spoofing experiments 

One minute of the recorded speech of each speaker was used to create their enrolments. 150 
recorded utterances (same for each speaker) were chosen as test set. The text of these utterances 
was used as the input for the three speech synthesizers to create the spoofing utterances. 

It is possible to attack the speaker verification system at various parts of the verification process. 
In this work the insertion of the testing and spoofing messages is done at the transmission level to 
avoid problems with microphone mismatch, reverberation and background noise, which will be 
studied later.  

6.1 Results 
The results of the experiments are presented in Table 1 in the form of Average PLDA SV score, 

its standard deviation and relative change in average PLDA SV score. The Equal Error Rates per 
speaker and synthesizer type are presented in Table 2. 

 

Table 1: Average PLDA SV score, standard deviation of PLDA SV score and relative change in average 
PLDA SV score 

 Average of score StDev of score Relative change of score 

Speaker orig us hmm dnn orig us hmm dnn us hmm dnn 

db 36.1 33.3 32.0 33.4 14.7 14.9 13.6 10.7 - 7.9% - 11.6% - 7.5% 

mr 40.6 33.3 37.1 37.1 23.3 15.0 11.1 9.5 - 18.0% - 8.8% - 8.8% 

sc 38.1 29.3 35.9 37.9 6.9 8.9 4.7 4.7 - 23.2% - 5.8% - 0.5% 

ss 26.1 15.6 17.1 22.0 12.5 12.8 8.5 7.6 - 40.4% - 34.5% - 15.8% 

Average 35.2 27.9 30.5 32.6 14.3 12.9 9.5 8.1 - 22.4% - 15.2% - 8.2% 
 

Table 2: Relative change in EER 

 EER[%] 

Speaker hmm us dnn Avg (hmm+us+dnn) 
db 42.7% 46.3% 42.3% 43.6% 
ss 31.3% 32.0% 40.0% 33.9% 
sc 42.0% 28.0% 46.3% 39.3% 
mr 42.3% 38.0% 40.3% 40.4% 

all 44.8% 39.5% 46.9% 44,0% 
 
Note, that the EER values are slightly bigger when computed on the data from all speakers 

together, as it was not possible to set a speaker-optimized threshold in this case. The value of EER 
equal to 50% would be reached by a classifier with a random score generator, therefore the EER in 
the range of about 39% to 47% is quite high, which means that spoofing is very effective. 

Figure 4 depicts the probability distributions of the normalized scores reached by original speech 
test utterances and those reached by spoofing utterances generated by three types of synthesizers. 
X-axis does not represent directly the score, but it represents the PLDA score in percent normalized 
to the mean of the scores reached by the original utterances of the corresponding target speaker. 
These means are set to 100% for all of the four speakers. “m” means that the depicted function is a 
Gaussian model, i.e. an approximation of the distribution, and “h” are values of the histogram, i.e. 
the counts of the really measured values of score per 10% range. The corresponding normalized 
scores of all the four speakers were merged together for this measurement. 
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Figure 4: Probability density functions of the normalized score of original speech utterances and utterances 

synthesized by the three types of synthesizers. “m” means  Gaussian model of the distribution and “h” means 
histogram-values. 

7. Discussion and conclusions 

As every speech utterance is different one from another, the realization and length of the 
enrolment greatly affect the results of the speaker verification. It was observed, that with some 
enrolments the PLDA score achieved by synthesized speech systematically reached higher average 
values than the same utterances uttered by the original voice. For these cases the enrolled speech 
signal probably presented deviations from the particular original voice utterances used for testing 
due to the speech variability, intra-speaker variability and inter-session variability. The models used 
in the synthesizers are obtained statistically and therefore generate speech with more general, 
averaged, features. This representation could have been more robust against the “atypical” 
enrolments, and keep consistently higher similarity to the enrolled speech samples in these cases. 
The statistical parametric synthesizers show considerably lower standard deviation of score than the 
original speech which also suggests lower variability in these voices. 

If the enrolment is relatively short (1 min) and the tested utterances are also short (from one 
word to three sentences), as was the case in this study, it is very difficult to find effective 
countermeasures against the attacks using speech synthesizers. Some authors take advantage of the 
fact that most of the speech processing techniques neglect the phase information and they detect 
phase perturbations in order to detect synthetic impostors attacking SV systems. Modified Group 
Delay and Relative Phase Shift were used in the experiments to represent the phase information. 
[46] The authors of this paper are currently analysing the effectiveness of using All Pole Group 
Delay Features for detecting the synthesized speech attacks and will publish the results soon.      

The results of the work presented in this paper can be summarized as follows: The spoofing 
utterances generated by all three tested types of synthesizers has reached very high PLDA scores, 
that would be capable of breaking protection based on the speaker verification. 

For the i-vector based speaker verification system the EER has reached 39.5%, 44.8% and 46.9% 
for US, HMM and DNN synthesizers respectively. This also means that DNN synthesizer, which is 
the most up-to-date of the tested synthesis systems, has shown the highest capability of effective 
spoofing the Speaker Verification. 
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