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It is well known that voice biometric systems ardnerable to imposture. Typical spoofing attacks
that are performed on speaker verification systears use impersonation, replay, voice conversion,
artificial signals, speech synthesis and other @ggres. In this work the authors analyze the
effectiveness of potential spoofing attacks usiffigint speech synthesis approaches. The stdteof
art speech synthesizers using deep neural netWorkacoustic characteristics modelling and high-
quality vocoder with enhanced excitation functiondal, are able to generate a very natural speech
signal keeping the personal characteristics oftdinget speaker, whose speech samples were used
either for adaptation of some general voice, ortlier complete design of the speech synthesizer. The
synthesis artefacts are nearly imperceptible iir gignal. However some systems using unit selactio
from a big speech database often offer comparabkven better speech quality. An i-vector based
speaker verification system with PLDA scoring waedi for experiments. Several male and female
synthesized voices, both in vocoder-based andsefiction versions were tested for their spoofing
effectiveness in speaker verification. Interestiggults show, that the lower variability of the
synthesized signal can sometimes lead to significdigher scores in comparison to those of thé rea
speech. Some possible countermeasures againgtphisf attacks are discussed.
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1. Introduction

Biometrics uses methods for recognition of humaased upon intrinsic physical or behavioural
traits. Biometrics is used as a form of identitgegs management and control. Different areas of
biometrics include physical biometrics, behaviow@metrics and medical biometrics [1, 2]. This
paper is focused on the area of people identityfieation from the acoustic characteristics of
speech and studies the effectiveness of speakéficaton systems spoofing using speech
synthesis.

In contrast to most of the published research ésge[3]), which most often checks the spoofing
capability of the synthesizers in which the unie¢sice built from a huge amount of data of many
speakers is adapted to a target voice using onbraktenths of utterances of the target speaker, i
this work we compare three synthesizers built elytifrom the recordings of each particular target
speaker. This approach was chosen to get a roeghofdthe effectiveness of different types of the
state of the art speech synthesis systems themsglvihe Speaker Verification (SV) spoofing
without the influence of adaptation. Therefore fiaene utterances included in the original voice
database of the target speaker are also useddiming and testing the synthetic voices. The
training sets and testing sets are of course difteiThe settings of the synthesizers were optithize
by a human expert to maximum naturalness, intbiligr and similarity to the original voice. They
have not been by no means optimized to reach thx@man speaker verification scores.
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2. Speaker verification

Speaker verification is a popular biometric idaoéfion technique [4] used for authenticating
subjects using their biometrics, the speech sighaé method is attractive as it does not require
direct contact with the subject (e.g. like iris dimyer print recognition systems); it also does$ no
require any special sensors, because microphoee®ar present on most portable hardware [5].

In speaker verification, a system decides whetherspeaker is the same subject as he claims to
be; thus the response is either true or false [6].

Mel Frequency Cepstral Coefficients (MFCC) are galtye used to represent the acoustic
parameters of the speech signal. In [7] the efééanulti-level wavelet decomposition as feature
extraction method based on Artificial Neural Netl®r(ANNs) was studied. The work [8]
presented an efficient Particle Swarm Optimizabased optimization to enhance the performance
of ANN for speaker recognition by means of optim@ANN weights.

Approaches based on joint factor analysis (JFAL{H, acoustic factor analysis (AFA) [11],
i-vectors [12] and probabilistic linear discrimirtaanalysis (PLDA) [13], have maintained
outstanding performance in challenging evaluatioanarios, such as the Speaker Recognition
Evaluation series developed by the National Iniaf Standards and Technology (NIST) [14, 15].

The i-vector approach has risen to prominence asdi facto standard in recent speaker
verification systems, due to its intrinsic capabitio map an utterance to a single low-dimensional
i-vector, turning a complex high-dimensional spealeeognition problem into a low-dimensional
classical pattern recognition one [16, 17, 18, 19].

3. Speaker verification system used in the experime  nt

The SV system was created using KALDI researchkibf#0]; the i-vector approach [12] was
used with PLDA scoring [21]. LibriSpeech corp@?] was used for UBM training (2500 English
speakers, 3 minutes of speech per each).

A part of the VoxForge database [23] was used testaset. 400 speakers were chosen as target
speakers, and other 1500 speakers as “impostoosi-target). One minute of speech per speaker
was used for enrolment. The utterances were takem fdifferent recording sessions when
available. The total number of 80 000 test uttezangas used with the length of 2 to 10 seconds.

In the Speaker verification test each of the eatblbpeakers has been tested against his own
utterances (target) and against utterances of @aalhthe other speakers (non-target). The digtanc
between a particular speaker model and the agtoahiing utterance is expressedse® e. As can
be seen on Fig.1.a., the verification works welltlb@ VVoxForge data, as the score distributions of
target and non-target speakers overlap only mitymal
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Figure 1: a) Score distributions for target and-temget speakers with the VoxForge test set; b) D&Te
of the speaker verification tested on VoxForge spekatabase.

The reliability of speaker verification on a givesst data is generally presented on the Detection
Error Trade-off (DET) Curve [24]. DET-curve platj software provided by NIST [25] was used to
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create the graph of the DET curve of the speaksficagion task (see Fig.1.b.). The Equal Error
Rate (EER) in the SV was about 3%.

Both training and testing databases include onlyligh speech. Such a big speech databases are
not available in Slovak so the authors of this pd@es accomplished a number of cross-language
experiments using UBM trained on English speakersSl of Slovak speakers speaking Slovak.
The effect of using different language for UBM tiaig than for testing did not introduce such a big
error that would substantially affect the resuftshis comparison experiment because the setting of
the SV system was the same for all voices. Asélalts of the SV were very good when tested on
several Slovak databases, it was decided to usgBiv trained on English LibriSpeech database
also in this work.

4. Spoofing in speaker verification

According to [26] most biometric systems (includi@y) are vulnerable to imposture. Spoofing
attacks are performed on a biometric system ats#mesor or acquisition level to bias score
distributions toward those of genuine clients, &sing the False Acceptance Rate (FAR). [27]

Today the spoofing attacks on the SV systems astlyn@alized through:

Impersonation [see e.g. 28, 29]. Impersonation refers to spgoéittacks with human-altered
voices and is one of the most obvious forms of 8pgoThe work [30] showed that impersonation
increased FAR rates from close to 0% to between 40&60%.

Replay attacks [31], using speech recordings of a genuine clientgconcatenation of shorter
segments. The equal error rate (EER) of 1% camaser to 70% using replayed spoof attacks [32].

Voice conversion [33, 34, 35], which is a technique that electraiticconverts one speaker’s
voice towards that of another.

Speech synthesis [36,37]. In this approach a speech synthesizasésl which is adapted to the
voice of genuine clients. Using an HMM-based speseithesiser, the FAR can rise up to 91%.

Artificial, non-speech-like tone signals [26]. The work [38] shows significant vulneraklgis to
entirely artificial, non-speech-like tone signa@ertain short intervals of converted speech yield
extremely high scores or likelihoods. Such intes\aale not representative of intelligible speech but
they are nonetheless effective in overcoming ty3Asystems.

5. Speech synthesis systems used in the experiment

Three types of speech synthesizers were used iexperiment, with four voices each. The
studio recordings of two male and two female speaere used for the synthesizers training and
testing. The sampling frequency was 16 kHz.

The Unit Selection synthesizer (us) was completely developed at the Institute of Infatios of
the Slovak Academy of Sciences (IISAS).[39] Themmation model and model of phoneme lengths
is based on CART trees. The basic concatenationegits used in this system are syllables.

The HMM synthesizer (hmm), a statistic parametric synthesizer with intoratiphoneme-
lengths and spectral models, was developed usiniyliHisised Speech Synthesis System tools [40].

Pentaphones were used as basic elements and theynedelled using five-state HMMs. Three
streams are modelled using HMMs: Duration (statatitens), logarithmic fundamental frequency -
logF0, and Spectral parameters (Mel Cepstral Goeffts). The speech is generated by the Mel-
generalized cepstral vocoder (MGC) using a simpilsginoise excitation. This excitation model
does not fully represent natural excitation sigm@ald generates “buzzy” speech. [41, 42].

The DNN synthesizer (dnn) was developed using Merlin toolkit for building Qre&leural
Network models for statistical parametric speedatttsysis [43]. It was used in combination with a
front-end text processor designed at the IISAS, tmed WORLD vocoder [44], version 0.2.0.
WORLD decomposes input speech into three paramedtersdamental frequency (F0), spectral
envelope and aperiodicity. Representation of etoitavia the band-aperiodicity function
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overcomes the older approach using direct excitagignal modelling [45]. The used Deep Neural
network had six Feed Forward hidden layers, hatd®@y hyperbolic tangent units each.

Speech data for synthesizers training and testing were obthiog studio recording of prompted
Slovak utterances, accomplished by two male andémwale speakers. The length of the utterances
was typically one sentence, but the sets alsodecdshorter (one or more words) and longer (up to
three sentences) utterances. The female spedkeasid ssrecorded 8733 and 2542 utterances
respectively, which is about 9 and 2.5 hours okspeThe male speakars andscrecorded 2486
and 1571 utterances respectively, which is abdua@d 1.5 hours of speech.

To illustrate the overall timbre similarity of vas we compare on Fig.1. the differences in the
Long Time Average Spectra (LTAS) of the synthesizettes with respect to that of the original
voice (female speakealb). It can be seen, that the statistical paramesymthesizers hmm and dnn
exhibit peaky structure of the difference functpmobably caused by a well known phenomenon of
their preference of the average values of pitehthé range 600 to 6600 Hz the difference does not
exceed 5 db, which suggests that spectral modesingood. The noticeable suppression of
frequencies over 7.5 kHz does not negatively atfeetquality of the synthesized signal.
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Figure 2: Differences between the LTAS of the speakvoice and that of particular synthetic voices
(female speakatb) . X-axis shows the frequency and y-axis givesviflees of Power Spectral Density.

To get an idea on the differences in the soundhef gythesizers we present on Figure 3
spectrograms of one sentence produced by the afigaice and by the three types of synthesizers.
The spectrogram of the hmm synthesized utteraremséo be blurry — the formant structure is a
bit less clear, the unit selection algorithm leaebservable discontinuities on the concatenation
points. The dnn synthesized utterance is evidendgt similar to the original voice.
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Figure 3: Spectrograms of the utterance “Zakon tidepRady Slovenskej Republiky” (The law of the
National Council of the Slovak Republic) uttereda&)ythe speaker’s original voice, b) HMM synthesize
hmm, c) DNN synthesizer - dnn, and d) Unit Selecggnthesizer - us (female speaib).

4 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

6. Spoofing experiments

One minute of the recorded speech of each speakerused to create their enrolments. 150
recorded utterances (same for each speaker) wesemhas test set. The text of these utterances
was used as the input for the three speech sym#hriedb create the spoofing utterances.

It is possible to attack the speaker verificatipstem at various parts of the verification process.
In this work the insertion of the testing and spogfmessages is done at the transmission level to
avoid problems with microphone mismatch, reverbemaand background noise, which will be
studied later.

6.1 Results

The results of the experiments are presented iteThin the form of Average PLDA SV score,
its standard deviation and relative change in aeRLDA SV score. The Equal Error Rates per
speaker and synthesizer type are presented in 2able

Table 1: Average PLDA SV score, standard deviatioRLDA SV score and relative change in average

PLDA SV score
Average of score StDev of score Relative changeoffe

Speaker orig| us | hmm dnn| orig| us | hmm dnn us hmm dnn

db 36.1{ 33.3] 32.0|33.4{14.7(14.9] 13.6]|10.7 -7.9% -11.6% - 7.5%

mr | 40.6{33.3] 37.1|37.1]23.3[15.0] 11.1] 9.5 -18.0%| -8.8% - 8.8%

sC 38.129.3[ 35.9(37.9] 6.9| 8.9 4.7 4.7 -23.2% -5.8% - 0.5%

Ss 26.115.6] 17.1]|22.0{12.5|/12.8| 85| 7.6 -40.4% - 34.5% - 15.8%
Average 35.2(27.9| 30.5|32.6|14.3[12.9] 9.5 | 8.1 -224% -15.2% -8.2%

Table 2: Relative change in EER

EER[%)]
Speakef hmm| us | dnn| Avg (hmm-+us+dnn)
db |42.7%46.3%42.3% 43.6%
ss |[31.3%32.0%40.0% 33.9%
sc  [42.0928.0%46.3% 39.3%
mr  [42.3%38.0%40.3% 40.4%
all  [44.8%39.5%46.9% 44,0%

Note, that the EER values are slightly bigger witemputed on the data from all speakers
together, as it was not possible to set a spegkanized threshold in this case. The value of EER
equal to 50% would be reached by a classifier witandom score generator, therefore the EER in
the range of about 39% to 47% is quite high, wiigans that spoofing is very effective.

Figure 4 depicts the probability distributions & thormalized scores reached by original speech
test utterances and those reached by spoofingantes generated by three types of synthesizers.
X-axis does not represent directly the score, tnggresents the PLDA score in percent normalized
to the mean of the scores reached by the origittatances of the corresponding target speaker.
These means are set to 100% for all of the foualsgrs. “m” means that the depicted function is a
Gaussian model, i.e. an approximation of the distion, and “h” are values of the histogram, i.e.
the counts of the really measured values of scerelp% range. The corresponding normalized
scores of all the four speakers were merged tog&ih¢his measurement.
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Figure 4: Probability density functions of the natimed score of original speech utterances andautes
synthesized by the three types of synthesizers.f@ins Gaussian model of the distribution andtibéans
histogram-values.

7. Discussion and conclusions

As every speech utterance is different one fromthaarp the realization and length of the
enrolment greatly affect the results of the spealaification. It was observed, that with some
enrolments the PLDA score achieved by synthesipedch systematically reached higher average
values than the same utterances uttered by thaalrigoice. For these cases the enrolled speech
signal probably presented deviations from the paldr original voice utterances used for testing
due to the speech variability, intra-speaker vdlitgland inter-session variability. The models dse
in the synthesizers are obtained statistically #retefore generate speech with more general,
averaged, features. This representation could Haen more robust against the “atypical”
enrolments, and keep consistently higher similaigtghe enrolled speech samples in these cases.
The statistical parametric synthesizers show cenaluly lower standard deviation of score than the
original speech which also suggests lower varigtiti these voices.

If the enrolment is relatively short (1 min) ancettested utterances are also short (from one
word to three sentences), as was the case in thdy,sit is very difficult to find effective
countermeasures against the attacks using spertifesizers. Some authors take advantage of the
fact that most of the speech processing technigegtect the phase information and they detect
phase perturbations in order to detect synthetmostors attacking SV systems. Modified Group
Delay and Relative Phase Shift were used in therxents to represent the phase information.
[46] The authors of this paper are currently anatyshe effectiveness of using All Pole Group
Delay Features for detecting the synthesized spaitabks and will publish the results soon.

The results of the work presented in this paper lmarsummarized as follows: The spoofing
utterances generated by all three tested typegnifissizers has reached very high PLDA scores,
that would be capable of breaking protection basethe speaker verification.

For the i-vector based speaker verification sydteerEER has reached 39.5%, 44.8% and 46.9%
for US, HMM and DNN synthesizers respectively. Taliso means that DNN synthesizer, which is
the most up-to-date of the tested synthesis systeassshown the highest capability of effective
spoofing the Speaker Verification.
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