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1. INTRODUCTION

At present the most successful automatic speech recognition systems, in terms of recognition

accuracy, are those which use hidden Markov models (HMMs) to model speech at the

acoustic level and dynamic programming based recognition algorithms which find the best

interpretation of an unknown speech pattern in terms of the output of a sequence of HMMs.

The most recent systems use HMMs to model speech at the phoneme level in order to

address medium and large vocabularies and to avoid vocabulary-specific training.

This success is due to two factors. Firstly HMMs provide a formal statistical framework

which is broadly appropriate for modelling speech patterns. This framework is able simulta-

neously to accomodate the time-varying nature of speech patterns, through the underlying

Markov process, and the variable segmental structure of these patterns through the sta-

tistical processes which are identified with the states of the model. Secondly there exist

computationally useful and rigorous mathematical methods for automatically optimising

the parameters of a set of HMMs relative to training data, and for classifying an unknown

speech pattern given a set of HMMs.

These two factors together constitute a powerful tool for speech recognition. However,

from the perspective of speech modelling a number of the assumptions which the HMM

framework makes are clearly incorrect. For example, the independence assumption states

that the probability of an acoustic vector given a particular state depends on the vector and

the state but is otherwise independent ofother vectors in the sequence. Problems associated

with this assumption are compounded by the nature of the state model, in which “extra-

segmental” variations (such as speaker, or choice of “target” for a particular utterance),

and “intra-segmental" variations (which occur once the state target has been chosen) are

characterised by a single model. Hence, the model allows extra-st ate factors such as identity

of speaker to change in synchrony with the frame rate of the acoustic patterns.

‘ This paper proposes a simple segmental HMM which addresses these problems. The new

model uses an underlying semi-Markov process [4, 7] to model speech at the segment level

and, at the state level, employs separate models for extra-segmental and intra—segmental

sources of variability. This enables extra-segmental factors to be fixed throughout a state

occupancy. The basic theory of gaussian segmental HMMs is presented in sections 4 and 5,

including the extension of the conventional Baum-Welch parameter estimation algorithm to

this type of model. Finally, the relationships between gaussian segmental HMMs, variable

frame-rate analysis, and HMMs with gaussian mixture densities are explored in sections 6

and 7.
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A similar model has been studied by P Brown at IBM

2. CONVENTIONAL HIDDEN MARKOV AND HIDDEN SEMI-MARKOV MODELS

In the HMM based approach to speech pattern modelling it is assumed that a sequence of

acoustic observation vectors, y = yhyz, ...,y,, ...,y1- corresponding to a given speech signal,

is a probabilistic function of a hidden state sequence a: = 2],“, ...,z., ...,27 where each 2.

is drawn from a finite set of states a = {on .., an}. The sequential and durational statistics

of z are determined by a transition probability matrix

A = [mil-5:1,...”

where, m,- = Prob(z, = oj|z,_1 = 47,-) is the probability ofa transition from state a,- to state

17,-, and an initial state probability vector

1r=[1r

 

where 1r, = Prob(:, = 0;). The pair M = (1r,A) define an N state Markov process. The

relationship between the observation vectors y, and the hidden states 2, is defined by a set of

probability density functions (PDFs) {bdhlmm where Mo) = Prob(yx = o|a¢l = 17,-) is the

probability that the observation 0 is associated with state 0;. The triple 'H = (7r,A,{b.~})

defines ahidden Markov process. The process is called hidden because it is not possible to

unambiguously infer the state sequence which gave rise to a particular observation sequence.

lntuitively the PDF associated with a particular state models variations in the acoustic

vectors for the corresponding speech sound, and the sequence of states in an HMM models

the sequence of sounds in the corresponding utterance.

One limitation of HMMs is the underlying geometric model of state (and hence speech

segment) duration, which assigns maximum probability to a duration of 1 time-unit and

progressively smaller probabilities to longer durations. A solution is to replace the underly-

ing Markov process in an HMM with a semi-Markov process in which a state duration PDF

D,- is associated with each state 03-. For d = 1,2,3, .., D;(d) is the probability of occupying

state a.- for precisely d time units.

A hidden semi-Markov process is a probabilistic function of a semi-Markov process. More

precisely, an N state hidden semi-Markov model (HSMM) [4, 7], or Variable Duration

HMM, S = (1r,A,{D,-},{b.-}) comprises an N-state Markov model M = (1r,A), a set of

N state duration PDFs D,,...,DN(D; : N —0 [0,1]), and a set of N state output PDFs

bl,...,bN i, b.- : R4 —> [0,1] (the symbols N and RJ denote the positive integers and real d

dimensional space respectively). Intuitively one can visualise such a process as follows. At

some time t state 2... = a.- is entered and a duration d... is chosen randomly according to the

state duration PDF 13,-. A sequence y(,...,y.+d__, of d", acoustic vectors is then generated

randomly and independently according to the PDF 17;. The process then moves to a new

state 0,- according to A.
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The principle of dynamic programming, and hence the standard dynamic programming
based recognition algorithms, can be extended from HMMs to HSMMs. Also it has been
shown that the Baum-Weld) parameter estimation algorithm can be generalised to HSMMs
with discrete, Poisson or Gamma state duration PDFs ([7, However, the need to
expliciter consider times t — 6 (6 = 1,2, ...,d,....,) during HSMM based computations leads
to an increase in computational load relative to HMMs.

To date, HSMMs have primarily been used to overcome the limitations of HMMs with re-
spect to speech segment duration modelling. Consequently, because the resulting improve-
ments in recognition accuracy are generally relatively modest and the increase in computa-
tional load is relatively high, there has been little recent work in this area. The objective of
this paper is to show that the segment based formalism provided by HSMMs can provide a
basis for addressing other limitations of HMMs.

3. SEGMENTAL HIDDEN MARKOV MODELS

A segmental HMM (SHMM) is a hidden Markov model in which the statistical process
associated with a state models sequences of frames (segments) rather than individual frames.
SEMMs are asynchronous, in the sense that whereas state transitions in a conventional
HMM are synchronised with the frame-rate of the acoustic front-end, in a SHMM they are
not. A HSMM is a SHMM in which a segment is a sequence of acoustic vectors drawn
independently from a single PDF.

The SHMMs studied in this paper employ a more sophisticated segment model in which
separate processes are used to cope with extra-segmental and intro-segmental sources of
variability. Extrasegment variability associated with a state a,- is characterised by a PDF
b.- called the state target pdf. On arrival at state a; a target is chosen according to this
PDF. This target is a PDF 1: which, intuitively, models legitimate within-segment variation
once all sources of extra-segment variation have beenfixed; Formally, the statistical process
associated with state a.- is defined by a PDF b.- : ‘P -—~ [0, l], where 1’ denotes a set of PDFs
defined on the set of acoustic vectors, and a state duration PDF 3;. A state duration 41,- is
chosen according to the PDF D.- and a sequence of d, vectors is then generated randomly
and independently according to the target u.

Given a sequence of observation vectors y = y" ..., yr, the joint probability of a subsequence
fill“ = y.,-_,+1,4.., y“. of length d,- and a particular target 1: given state 0,- is given by:

‘I

P..(yi§..+n”l = 9411054”) H DUI), (1)
l=r.-_r+l

and the probability of y,'_."_I H given a,- is the integral P,,(y:j_,+1 = I, P,,(y::_l“,u).

This paper presents an analysis of the alternative probability function

Punks“) = I’m-(might), (2)
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where I} is the target which maadmises P". (yfiflu, u)r Given a state sequence a: = 2,, ..., :7, I

such that a transition from state a,- to state 0;“ occurs at time 1;, the “joint probability" {

P(y,z|M) ofy and 2 given M, and the “probability” P(y|M) of y g'ven M are given by‘: l‘

l
l

N

P(yy’lM) gut—l.ipu.(yi:_l+l v (3)

algorithms to semi-Markov processes [4, 7].

4. GAUSSIAN SEGMENTAL HMMS

Now consider the case where acoustic vectors are drawn from n-dimensional space R.“ , and

for each state a.- a target is any gaussian PDF defined on R.“ with fixed variance 1:. Then

1’ = R" and a target I) = N“. can be identified with its mean c. ii the state target PDF 1:;

is a gaussian PDF defined on R", with mean 1;; and variance 7;, then the resulting model

M will be called a gaussian segmental HMM (GSHMM). The number of parameters in a

GSHMM is only increased by the variance terms 7,- (i = 1,...,N) relative to a gaussian

HMM.

It can be shown [8] that the target (mean) i: which maximises P," (y, c) is given by:

um + 2‘
a:

  

(5)

Thus the “best target" is a linear combination of the expected target for state v.- and the

actual observations. If r.- is large, so that the observations are not expected to be tightly

constrained by the target process, then 6 is biased towards the state mean u;. But if 7.- is

large and 7.- is small, 6 is biased towards the actual observations.

5. PARAMETER REESTIMATION FOR GAUSSIAN SEGMENTAL HMMS

A Baum-Welch type parameter reestimation process has been derived for GSHMMs As

above, let M be an N~state GSHMM with parameters in, 7; and 1;, and let y be a sequence '

of observations vectors. Let M be the GSHMM with parameters [13,? and fl, defined by:

Exes; P(yv 2" _.+1 y! (6)

Exes.- “LII/‘4)”;

__ _ Exés. [JG/JIM)“; — as):
7‘ ‘ 2.“. P(y.zIM) (7’

'to simplify notation it will be assumed that (i) the underlying Markov process is strictly left-right, and

(ii) all observations are scalar. Neither of these assumptions are necessary

 

E I

15(le = ZHyflIM) (4)

These and similar expressions can be computed using the extensions of standard HMM
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Eggs.- Ply-ZlM) zibr;_.+1(E—x.i — ill)z

' = E-est P(yv¢lMlD-' (s)

. 56.6?
where S.- = {z : z, = o,- for some t} and E,"- =

 

If '7.- > 1"; fori = 1,...,N, and y = y1, ...,yT is not constant, then 2

The proot’lfollows [1, 5] and is presented in full in It is first shown that the auxillairy
function Q(M,M) defined by:

Q(M.M) = 2P(y,le)IvyP(:/.=IM) (9)

has the property -that if Z then 2 Therefore, in
order to increase P(y, :clM)it is suflicient to find a model M which maidmises Q(M,M), as
a. function of M. Equations (6), (7) and (8) occur as a critical point of Properties
(i) and are used to show that this function is concave and tends to —oo as M approaches
the boundary of the parameter space, guaranteeing that the critical point is unique and is
a maximum.

6. RELATIONSHIP WITH VARIABLE FRAME RATE ANALYSIS

The gaussian segmental HMM based analysis proposed here can be interpreted as a natural
extension and integration of conventional Variable Frame Rate (VFR) analysis and hidden
Markov modelling.

VFR analysis is a method for data-rate reduction which has been shown to give improved
performance over fixed frame rate analysis for automatic speech recognition In its
simplest form VFR is used to remove vectors from an observation sequence. A distance is
computed between the current observation vector and the most recently retained vector,
and the current vector is discarded if this distance falls below a threshold T. When a
new observation vector causes the distance to exceed the threshold, the new vector is kept
and becomes the most recently retained vector. VFR analysis replaces sequences of similar
vectors with a single vector, and hence reduces the amount of computation required for
recognition.

This basic VFR algorithm can be improved in a number of ways:

(i) Rather than replacing a sequence of acoustic vectors y" ...,y. with y., the first vector
in the sequence, it should replaced with an average 3,; over the sequence.

(ii) For a finite sequence y = y1,...,yr the “left-right" threshold based segmentation used
in the basic VFR algorithm should be replaced with a “global” dynamic programming
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based segmentation algorithm which partitions the sequence yinto M subse-
quences yg‘,...,y:§_,+l, ...,y::_l+, (l S I; S 5 ll” = T) such that some criterion

M
Dist(tl, ...,t.—, ..., t") = E D(y§;‘_m) (10)

i=1

is minimised. D(y::_l+,) is typically a distortion measure on the sequence mil“,

for example the sum of euclidean distances between vectors in the sequence and the

sequence mean.

In Markov model based speech pattern processing it is clearly sub-optimal to segment
the sequence of acoustic observation vectors and discard information during VFR
analysis, and then to perform a second state-level segmentation. The segmentation of
the observation sequence during VFR analysis should be integrated with the state-level
segmentation performed in the model based analysis.

Extending the basic VFR algorithm in these ways leads naturally to a segmental HMM
based analysis. Suppose that M = (1r,A,{b.-}) is a HMM, with b; = Mam), and that
y = y,,.,.,y,,...,yr is a sequence of acoustic vectors in H‘. In a dynamic programming

based VFR scheme of the type alluded to above, after VFR analysis the sequence y is
represented by the sequence ii = fi;‘,...,i::_l+,, ...,t]::_l+,, where in.“ denotes an average
over the sequence 11:4“.

During subsequent HMM based processing, dynamic programming is used again to find a
state sequence z = z,,.,.,zu relative to the HMM M, such that the probability

M

PGIIZIM) = H ali-IvliDfi(di)bii(g::—a+l (11)
i=1

is maximised. ’D,_. is a state dependent duration PDF which is applied to the VFR count

di.

Ideally the two equations (10) and (11) should be optimised jointly. Let

vote.) = i Dzuc(yi,l7ii-r+i) (12)
mt... +1

where Dsyc denotes the squared euclidean metric. Then, since

Dsuc(yut7ii-.+1) = —K1109(-’Vg:-' “AU-l + K: (13)

where K; and K: are constants, minimising equation (10) is equivalent to maximising the
quantity

M 2.-

P““"-"-'v-"‘M)=H II 1%: Mo.) (14)
I'=Il=1;_|+l '-I
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Combining (11) and (14) gives an evaluation criterion for a VFR analysis scheme which
satisfies (i), and above:

. M I.‘

PW, 3171) = H fl:;-,.g,-D-.-(di)bc.(!71i_u+1) H 1V9?
i=1 r=I.-—r +1 "-‘

My.) (15)

But this has the same form as equation (3), with 1'; = l, for all i, and 37,1.“ = Cut,

In other words. replacing the basic VFR analysis procedure described above with adynamic

programming based method and integrating this with the higher-level HMM based process-
ing leads naturally to the type of gaussian segmental HMM based analysis proposed in this
paper. Hence segmental HMM: can be regarded as an extension and integration of VFR
and HMM-based analysis.

7. RELATIONSHIP WITH GAUSSIAN MIXTURE DENSITIES

A class of state output PDFs which is commonly used with conventional HMMs is the class

of gaussian mixture densities. In such an HMM the state output PDF b.- associated with
the ith state has the form J

bi(”) = EwiMuja,-)(°) (16)
i=1

for any observation 0, where 2;, w; = 1. There is also a continuous version:

Mo) = [wows-snow (17)

where w(j )dj = 1. Parameter reestimation formulae for such models have been established
in [5] and [3], and in' [5] respectively.

Gaussian mixtures are used to compensate for the fact that the observations associatedwith

a particqu state will not in general conform with asingle gaussian PDF. This is particu-

larly true if the models are used to characterise speech from a number of speakers. Thus,
gaussian mixtures are typically used to model broad sources ofextra-segmental variahlity

and hence, from the viewpoint of this paper, they exacerbate the problems associated with
the independence assumption within a state.

The segment model proposed here is clearly related to (17), however in the new type of
model a single component of the continuous mixture is chosen on entering a state and all
observations emitted during a particular state occupancy are drawn from that component.

8. SUMMARY

This paper presents the basic theory of a new segmental HMM which addresses some of
the limitations of conventional HMMs in the context of speech pattern modelling. The new
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aification and parameter estimation algorithms. Interesting relationships between segmental
HMMs, conventional variable flame rate analysis, and continuous gaussian mixture HMMs

[

model is computationally useful in that it admits extensions of the conventional HMM clas- 1

have been described. 1

[
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