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Axisymmetric waves have characteristics, which are of practical interest when assessing the condition of a 

buried plastic water pipe. At low frequencies, well below the ring frequency, these waves are dominant. They 

are well couple to the fluid, pipe wall and surrounding medium and carry a high amount of energy when 

compared to other waves. Due to substantial differences in the wavenumber of the 21,s= waves a new experi-

mental method has been developed to distinguish between the pipe wall motion that arises from each axisym-

metric wave. The results from experimental studies are compared with the theoretical predictions and a good 

agreement has been found. The outcomes of this investigation clarify the characteristics of the dominant ax-

isymmetric wave within the buried pipes and thereby the waves generated within the surrounding medium. 

Moreover, decomposition of the two waves will help quantify the value of pressure within the fluid. Further 

application of this distinction is interpretation of the characteristics of the excitation source. 
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1. Introduction 

Intensive research has been carried out as part of the mapping the underworld project, aimed at 

identifying the location of buried utilities without the need for excavation [1]. One of the potential 

techniques is a vibro-acoustic approach, which includes collection of the ground surface vibration, 

resulting from propagation of the low frequency acoustic waves within a buried water plastic pipe. 

Looking at the both phase and magnitude of the transfer function between these recorded surface 

motions and acoustic wave generator within the pipe provides information about the location of the 

pipe [2]. For the pipe detection to be effective, the nature of the acoustic wave generation within the 

plastic pipes must be known, a priori. At low frequencies, four types of waves are responsible for 

most of the energy transfer [3], [4]. Out of four types of wave, three of them are axisymmetric (de-

noted by 0n= , showed in Fig. 1-(b)). Out of these three, two waves termed 21,s= usually carry high 

amounts of energy relative to the third 0s= , a torsional wave. The wave termed 10, s=n =  is a fluid-

borne wave with both axial and the radial motion [3], [4]. The axisymmetric wave termed 2s= is 

predominantly a shell compressional wave with small radial motion. Coupling between the fluid to 

the pipe wall can be achieved, as dictated by the Poisson's ratio and the Young’s modulus of the pipe 

wall and also bulk modulus of the fluid. The axisymmetric torsional wave, termed 0s= , is uncoupled 

to the fluid. Hence, the energy associated with this wave type is exclusively within the shell [3], [4]. 

The 1n= wave is a flexural wave, with the fluid inside exerting a mass loading effect. Waves with a 

circumferential mode greater than one (𝑛 ≥ 2), cut on at higher frequencies. The speed and attenuation 

of these waves are associated with the real and imaginary components of the wavenumber respec-

tively [5]. Due to the predominance of the axisymmetric waves within the buried plastic pipes at low 

frequencies, this research developed a candidate technique to decompose the contribution of 21,s=

waves on the pipe wall motion. The outcomes from this investigation provides better understanding 
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of the detected waves at the ground surface, from vibration of a buried plastic water pipe.  Prior to 

decomposing of the s=1,2 waves, a prototype models is required to express dynamic behaviour of a 

fluid filled pipes at low frequency. 

 

Figure 1 (a). Fluid-filled pipe coordinate system. (b) circumferential mode shapes of n = 0 and n=1. 

The modal shapes +/– illustrate the correspond phase of the motion in the relative region. –––, ude-

formed character; – –, deformed character. 

2. Dynamic behaviour of fluid filled 

The dynamic behaviour of a fluid filled pipe has been previously investigated in references [7-8]. 

In this paper, the models developed by Pinnington and Briscoe [6] are used for further analysis. In 

their model Kennard’s equations are utilised, therefore the contribution from the bending wave, and 

the rotational inertia and shear transfer of the pipe are disregarded and only validated at well below 

the ring frequency. The equations provided here contain the parameters investigated in this paper, for 

further analysis.  For a semi-infinite fluid filled pipe illustrated in Fig. 1-(a), the axial and radial dis-

placement of the pipe wall and the axial displacement of the fluid arises from propagation of the

 ,s= 21 wave in the positive x direction can be expressed by [6]: 
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sU and sW are the amplitude of the pipe wall displacement, arise from  ,s= 21 waves in the axial and 

radial direction respectively. sk is the wavenumber associated to the axisymmetric waves , expressed 

in Eq.(3). 
dx

xdp
U

f

sf

)(1
2

 ; where f and  are the fluid density and angular frequency respec-

tively, )(xp  is the pressure within the fluid and is given by [6]:  
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and )(0 rkJPP r
ssf  ; where sP , 0J  and r are the amplitude of the fluid pressure arising from  ,s= 21

waves, a Bessel function of order zero and the radial distance in cylindrical coordinate system respec-

tively. r
sk is the radial wavenumber expressed via fluid wavenumber and the axisymmetric wave-

number by:   222

sf
r
s kkk  . sk is the wavenumber associated to the fluid borne wave and the shell borne 

wave and is given by [6]: 
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where fk  and Lk are the fluid wavenumber and the compressional wavenumber in a flat plate respec-

tively. v is the Poisson's ratio of the pipe wall,  is a normalized ring frequency; akL , where a is 

the pipe mean radiuses.   called fluid loading which is given by [6]: )1(
2

2v
Eh

aB f
 ; where fB , E

and h are the fluid bulk modulus; pipe wall Young’s modulus and its thickness respectively. The re-

lationship between fluid pressure and radial motion of the pipe wall associated with the s=1,2 waves 

can be represented as [6]: 

 













22
2

1

2

1

1 vP

P

W

W 
 (4) 

where 1P  and 2P  are the fluid pressure associated to the  ,s= 21 waves. The axial and radial motion 

of the pipe wall arising from the  ,s= 21 wave are related together by [6]:  
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At low frequency when 1 and by assuming 2v , the relative energy associated to each wave 

can be expressed by [6]: 
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2.1 Axial excitation of the pipe wall 

Applying axial excitation to the pipe wall, gives zero pressure within the fluid at 0x= . Applying 

this boundary condition to Eq.(2) provides 21 PP  at x=0 and therefore Eq.(4) decreases to [6]: 
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, where the subscript p illustrates pipe wall excitation. Substituting Eq.(4) into 

Eq.(5) gives the relative amplitudes of the each wave in axial direction as [6]: 
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2.2 Fluid excitation 

The axial stress within the pipe wall at any position along the pipe is given by [6]: 
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Exciting of the contained fluid gives zero axial stress, in the shell wall, at the point of excitation. 

Therefore, by setting 0)0(   in Eq. (6), release [6]: 
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fluid excitation. The relative wave amplitudes in the radial direction is established via substituting 

Eq. (6) into Eq. (5), as [6]: 
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3. Model parameters 

The material properties of the used MDPE pipe and the contained fluid are tabulated in Table 1. 

Table 1 Material properties of MDPE pipe. 

Parameter Description of parameter MDPE Water Air  

a  Mean radius (m) 21045.8   - -  

h  Wall thickness (m) 2101.1   - -  

E  Young’s modulus (Gpa) 6.1  - -  
  Material loss factor 06.0  - -  

v  Poisson’s ratio 4.0  - -  

B  Bulk modulus - 91018.2   51042.1    

  Density (𝑚3) 880  1000  29.1   

 

The ratios derived in Sections 2.1 and 2.2 are calculated in accordance with the data provided in Table 

1, and listed in Table 2 

Table 2 Ratios of variables related to the axisymmetric fluid and shell borne wave within the MDPE 

pipe loaded via different excitation sources at frequency of (a) 10 Hz and (b) 400 Hz. 
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2531  
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The data presented in Table 2 illustrates the fact that the axial displacement of the wall of water-

filled pipe, induced via structural vibration, is predominantly due to the 2s= wave. Furthermore, the 

radial displacement of the pipe wall is primarily due to the  s=1 wave, even though it only carries a 

small amount of energy.  

When the pipe loaded with the fluid excitation, the 1s= wave becomes predominant in both axial 

and circumferential direction and most of the energy store in the fluid. However, the contribution 

from the 2s= wave on the axial displacement of the pipe wall is not negligible. 

In the next part, a technique is presented to discriminate between the  ,s= 21 waves using experi-

mental data. As a first try, selecting an ideal situation where both wave types have the same magnitude 

might help achieve successful wave decomposition; however, none of the ratios presented in Table, 

2-3 are equal or close to unity. Thus, the best option for post processing, is analysing the data obtained 

from axial displacement of the pipe wall when the excitation is applied to the fluid. 

4. Axisymmetric wave decomposition 

The experimental arrangement consists of a 2.12 m water filled MDPE pipe. Geometrical and 

material properties of the pipe are illustrated in Table 1. The test specimen was assembled by placing 

four B&K accelerometers axially around the circumference of the pipe wall. Spatial averaging of the 

data from these four accelerometers allows us to reduce the effects from higher order modes on the 

pipe wall displacement. This measurement was taken at four locations along the pipe, with interval 

distances of mx 3.0 between each adjacent measurement point, depicted in Fig. 2. The optimal dis-

tance for transducer placement is given by [8]:  8.0.1.0  xk ; where 𝑘  is the medium wave-

number and x is the distance between adjacent transducers. 

Measurement of the flexural wave in a beam and a plate within the near field region was performed 

by Pavic [9]. The results illustrate that the effect of the near field wave cannot be discarded unless 



ICSV24, London, 23-27 July 2017 
 

 

ICSV24, London, 23-27 July 2017  5 

the location of the measurement point is at a distance equal to half a wavelength from any disconti-

nuity. Therefore, measurements were taken at 40 cm distance from each end of the pipe. The effects 

from evanescent waves might become significant for either short pipes or at lower frequencies. 

In this experiment, the cylinder was subjected to the fluid excitation at one end, via an underwater 

loudspeaker followed by recording the axial acceleration of the pipe wall as illustrated in Fig. 2. The 

time extended signal used to internally excite the pipe composed of a linear sweep sine, ranging from 

10 Hz to 400 Hz, each lasting two seconds. The signal then was recorded using a sampling rate of 1 

kHz and a low pass filter was imposed at 400 Hz to prevent aliasing.   

 

Figure 2 Experimental arrangement used for monitoring the axial motion of the shell comprises the 

s=1,2 waves. 

The recorded axial acceleration of the pipe wall composes of four independent elements, namely: 

two axisymmetric waves in the axial direction, travelling up and down along the pipe. Since the ac-

celerometer measures the acceleration of the pipe wall, to obtain the pipe wall displacement, the data 

outputted from the transducers is divided by 2 . However, as we are interested in the amplitude ratio 

of these two axisymmetric wave, this division is not necessary and has been performed for the sake 

of clarity. The general form for decomposition of the amplitude of the each axisymmetric wave can 

be achieved by: 1- substitution of the transfer functions )(,),( 41 xQxQ  , which are obtained via meas-

urement of the axial acceleration of the pipe wall, at locations 41 ,, xx  , with respected to the applied 

voltage to the loud speaker followed by dividing them by
2 , in the matrix in Eq. (7). 2- Substitution 

of the wavenumbers of the two axisymmetric waves, 1k and 2k from the analytical simulation given in 

Eq. (3), into Eq. (7). Therefore, the only unknown terms are 1U and 2U which represent the ampli-

tudes of the axisymmetric waves with respect to the applied voltage and the superscripts  and   

represent the waves travelling in the positive and negative direction. 
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By performing matrix inversion into Eq. (7), the amplitude of each axisymmetric wave can be 

expressed by: 
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The ratio of the 
21 /UU and 

21 /UU obtained from Eq. (8) is plotted in Figure 3 using the blue and 

red dotted lines respectively. Discrepancy between the data from experimental study and theory is 
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observed at frequencies above 120 Hz. The observed peaks at 120 Hz, 380 Hz are related to the cut 

on frequency of the 32,n= modes. The cut on frequency of the higher order modes for the empty and 

the water filled MDPE pipe when it is surrounded by air are provided in Section 4.1. Furthermore, 

the peaks observed at intervals of 63 Hz corresponded to the resonance frequency of the fluid column, 

which occurs at the integral numbers of half wavelengths within the fluid.  

 

 

Figure 3 The ratio between s=1,2 waves contributes to the axial displacement of the pipe wall, for fluid 

excitation at frequency 10 Hz to 400Hz 

4.1 Cut on frequency of flexural modes of thin walled shell 

As illustrated in Figure 3, the measured data was slightly deviated from the theory. Therefore, an 

investigation was carried out to find the cut on frequency of the higher order modes within the plastic 

pipe when it is empty and when it is filled with water, which is given by [10]: 
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  is the fluid –shell mass ratio, where f and s are the density of the fluid and the pipe wall 

respectively.
a

c
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  is the pipe ring frequency, where sL Ec /  , and 
2

2
2

12a

h
s  is the shell thick-

ness parameter. Similar formula is established by Moser [11] (eq.4 of the mentioned  paper). Substituting the 

parameter, using Table 1, the cut on frequency of the higher modes for the empty and the water filled pipe 

is: 

Table 3 Cut on frequency of the MDPE pipe when it is empty and when filled with the water. 

Mode number n=2 n=3 n=4 n=5 

Cut on frequency of the 

empty pipe (Hz) 

255 720 1374 2209 

Cut on frequency of the 

water filled  pipe (Hz) 

120 380 792 1364 
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5. Conclusion 

Due to well coupling of the 21,s= waves, applying any type of excitation to the water-filled pipe 

will generate these two wave. In this study, attempts are made to distinguish between the contribu-

tions from the two waves on the vibration of the pipe wall. The results from experimental study are 

compared with theoretical predictions and a good agreement has been obtained. Extension of this 

practical measurement, for decomposition of the effect of the 21,s= waves on the axial and radial mo-

tion of the pipe wall, via other source sensor sets, is under investigation. 

The data from this examination highlight the dominant axisymmetric waves within the pipe wall 

and clarifies the type of generated conical wave within the surrounding medium. Further applications 

of this decomposition are elaboration of the source of excitation within the pipe and quantification 

the induced pressure within the pipe. 
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